• 제목/요약/키워드: Rhodamine dyes

검색결과 50건 처리시간 0.023초

나노소재를 이용한 유기염료 광촉매 분해 반응 (Photocatalytic Degradation of Organic Dyes with Nanomaterials)

  • 홍성규;유구용;임충선;고원배
    • Elastomers and Composites
    • /
    • 제45권3호
    • /
    • pp.206-211
    • /
    • 2010
  • 실온의 초음파 조건에서 질산 아연과 수산화 나트륨을 각각 물과 알코올 용액에서 반응시켜 산화 아연(ZnO) 나노입자를 합성하였다. 풀러렌($C_{60}$)과 ZnO 나노입자들은 전기로를 이용하여 각각 $700^{\circ}C$ 에서 2 시간 동안 가열하였다. 풀러렌($C_{60}$)과 ZnO 나노입자들의 형태와 광학성질은 XRD, SEM, TEM 과 UV-vis spectroscopy를 이용하여 분석하였다. 가열한 $C_{60}$과 ZnO 나노입자, 비가열한 $C_{60}$과 ZnO 나노입자를 각각 methylene blue(MB), methyl orange(MO), rhodamine B(RhB)용액에서 UV-vis spectroscopy를 사용하여 광촉매 분해반응을 연구하였다.

Poly(dimethylsiloxane) 미세 구조물의 신속한 기하학적 패터닝 (Rapid Topological Patterning of Poly(dimethylsiloxane) Microstructure)

  • 김보열;송환문;손영아;이창수
    • 한국염색가공학회지
    • /
    • 제20권1호
    • /
    • pp.8-15
    • /
    • 2008
  • We presented the modified decal-transfer lithography (DTL) and light stamping lithography (LSL) as new powerful methods to generate patterns of poly(dimethylsiloxane) (PDMS) on the substrate. The microstructures of PDMS fabricated by covalent binding between PDMS and substrate had played as barrier to locally control wettability. The transfer mechanism of PDMS is cohesive mechanical failure (CMF) in DTL method. In the LSL method, the features of patterned PDMS are physically torn and transferred onto a substrate via UV-induced surface reaction that results in bonding between PDMS and substrate. Additionally we have exploited to generate the patterning of rhodamine B and quantum dots (QDs), which was accomplished by hydrophobic interaction between dyes and PDMS micropatterns. The topological analysis of micropatterning of PDMS were performed by atomic force microscopy (AFM), and the patterning of rhodamine B and quantum dots was clearly shown by optical and fluorescence microscope. Furthermore, it could be applied to surface guided flow patterns in microfluidic device because of control of surface wettability. The advantages of these methods are simple process, rapid transfer of PDMS, modulation of surface wettability, and control of various pattern size and shape. It may be applied to the fabrication of chemical sensor, display units, and microfluidic devices.

Hydrothermal Synthesis of Cubic Mesocrystal CeO2 for Visible Photocatalytic Degradation of Rhodamine B

  • Yang, Hexiang;Zhou, Mengkai;Meng, Zeda;Zhu, Lei;Chen, Zhigang;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제25권3호
    • /
    • pp.144-148
    • /
    • 2015
  • Cubic mesocrystal $CeO_2$ was synthesized via a hydrothermal method with glutamic acid ($C_5H_9NO_4$) as a template. The XRD pattern of a calcined sample shows the face-centered cubic fluorite structure of ceria. Transmission electron microscopy (TEM) and the selected-area electron diffraction (SAED) pattern revealed that the submicron cubic mesocrystals were composed of many small crystals attached to each other with the same orientation. The UV-visible adsorption spectrum exhibited the red-shift phenomenon of mesocrystal $CeO_2$ compared to commercial $CeO_2$ particles; thus, the prepared materials show tremendous potential to degrade organic dyes under visible light illumination. With a concentration of a rhodamine B solution of 20 mg/L and a catalyst amount of 0.1 g/L, the reaction showed higher photocatalytic performance following irradiation with a xenon lamp (${\geq}380nm$). The decoloring rate can exceed 100% after 300 min.

Magnetic biochar from alkali-activated rice straw for removal of rhodamine B from aqueous solution

  • Ren, Zhaogang;Chen, Fang;Wang, Bin;Song, Zhongxian;Zhou, Ziyu;Ren, Dong
    • Environmental Engineering Research
    • /
    • 제25권4호
    • /
    • pp.536-544
    • /
    • 2020
  • To address organic dye wastewater, economic and effective adsorbents are required. Here, magnetic biochar from alkali-activated rice straw (AMBC) was successfully synthesized using one-step magnetization and carbonization method. The alkaline activation caused the large specific surface area, high pore volume and abundant oxygen-containing groups of the AMBC, and the magnetization gave the AMBC a certain degree of electropositivity and fast equilibrium characteristics. These characteristics collectively contributed to a relative high adsorption capacity of 53.66 mg g-1 for this adsorbent towards rhodamine B (RhB). In brief, RhB can spontaneously adsorb onto the heterogeneous surface of the AMBC and reach the equilibrium in 60 min. Although the initial pH, ionic strength and other substances of the solution affected the adsorption performance of the AMBC, it could be easily regenerated and reused with considerable adsorption content. Based on the results, H-bonds, π-π stacking and electrostatic interactions were speculated as the primary mechanisms for RhB adsorption onto the AMBC, which was also demonstrated by the FTIR analysis. With the advantageous features of low cost, easy separation, considerable adsorption capacity and favorable stability and reusability, the AMBC would be a potential adsorbent for removing organic dyes from wastewater.

Production of Colored Cocoons by Feeding Dye-Added Artificial Diet

  • Kang, Pil-Don;Kim, Mi-Ja;Jung, I-Yeon;Kim, Kee-Young;Kim, Young-Soon;Sung, Gyoo-Byung;Sohn, Bong-Hee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제22권1호
    • /
    • pp.21-23
    • /
    • 2011
  • In order to produce the colored cocoons we finalized the adequate amount of dyes throughout several trial and error experiments. The proper amount of each dye required for per 100 g of each colored cocoon turned out to be 150 mg of Rhodamine, 1560 mg of Thionin, 170 mg of Neutral red, and 200 mg of N-Blue, respectively. With this amount of dyes silkworms grew without physiological disorders. In order to produce colored cocoons, artificial diet composed mainly of mulberry leaves was fed to silkworms from the beginning of 5th instar, and subsequently fed with dye included diet from $4^{th}$ day of the 5th instar. This process resultantly produced colored silkworm body from the onset of feeding and subsequently colored cocoons and eggs. Nevertheless, the dye induced color was not inherited to next generation.

Self-cleaning measurements on tiles manufactured with micro-sized photoactive TiO2

  • Bianchi, C.L.;Gatto, S.;Nucci, S.;Cerrato, G.;Capucci, V.
    • Advances in materials Research
    • /
    • 제2권1호
    • /
    • pp.65-75
    • /
    • 2013
  • Heterogeneous photocatalysis is a rapidly developing field in environmental engineering. It has a great potential to cope with the increasing pollution in the air. The addition of a photocatalyst to ordinary building materials such as tiles, concrete, paints, creates environmental friendly materials by which air pollution or pollution of the surface itself can be controlled and diminished. This work reports the results of the laboratory research, especially carried out towards air purifying action and self-cleaning measurements. In particular the research was focused on the study of the photocatalytic behavior of industrially prepared tiles produced starting from commercial micro-sized $TiO_2$. Air purification action has been investigated through NOx degradation tests. On the contrary, the degradation of pollution at the surface, also called as self-cleaning action, is verified by the degradation of two different organic dyes: Rhodamine B (red color) and Metanil yellow (yellow).

고정화된 백색부후균을 이용한 염료의 탈색에 관한 연구 (A Study on Decolorization of Dyes with an Immobilized White Rot Fungus Irpex lacteus)

  • 원찬희;김종신;박상숙
    • 한국환경과학회지
    • /
    • 제7권3호
    • /
    • pp.263-268
    • /
    • 1998
  • Decolorization of congo red, rhodamlne B was investigated by the white rot fungus Irpex lacteus welch has biodegrading capability of various recalcitrants. White rot fungus Irpex lacteus is Immobilized by PVA-freezing method. An Immobilized Irpex lacteus decolorizes 91% of congo red In 8 days under culture with glucose 2%(Initial cone.). It also showed 70% of decolorization at 3 days In the state of putting MnSO4 1mM. But, rhodauune B has no significant differences about decolorization among different mixture ratio of Irprx lacteus with PVA, concentration of carbon, nitrogen and manganese sulfate.

  • PDF

Ag2Se-Graphene/TiO2 Nanocomposites, Sonochemical Synthesis and Enhanced Photocatalytic Properties Under Visible Light

  • Meng, Ze-Da;Zhu, Lei;Ghosh, Trisha;Park, Chong-Yeon;Ullah, Kefayat;Nikam, Vikram;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3761-3766
    • /
    • 2012
  • $Ag_2Se$-Graphene/$TiO_2$ composite was synthesized by a facile sonochemical method. The as-prepared products were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectrophotometer. During the reaction, both of the reduction of graphene oxide and loading of $Ag_2Se$ and $TiO_2$ particles were achieved. The as-prepared $Ag_2Se$-Graphene/$TiO_2$ composites possessed great adsorptivity of dyes, extended light absorption range, and efficient charge separation properties simultaneously. Hence, in the photodegradation of rhodamine B (Rh.B), a significant enhancement in the reaction rate was observed with $Ag_2Se$-Graphene/$TiO_2$ composites, compared to the pure $TiO_2$. The high activity can be attributed to the synergetic effects of high charge mobility, and red shift in absorption edge of $Ag_2Se$-Graphene/$TiO_2$ composites.

Rational design of rare-earth orthoferrite LnFeO3 via Ln variation towards high photo-Fenton degradation of organics

  • Thi T. N. Phan;Aleksandar N. Nikoloski;Parisa A. Bahri;Dan Li
    • Advances in nano research
    • /
    • 제16권1호
    • /
    • pp.41-52
    • /
    • 2024
  • In this study, rare-earth orthoferrites LnFeO3 were synthesized using a facile hydrothermal reaction and their visible-light-induced photo-Fenton degradation of organics was optimized through Ln variation (Ln = La, Pr, or Gd). The morphological, structural, and chemical characteristics of as-prepared samples were examined in detail by using different methods, including XRD, SEM, TEM, XPS, etc. On the other side, under visible light illumination, the photo-Fenton-like catalytic activities of LnFeO3 were assessed in terms of the removal of selected organic models, i.e., pharmaceuticals (ketoprofen and tetracycline) and dyes (rhodamine B and methyl orange). As compared with PrFeO3 or GdFeO3, the sample of LaFeO3 displayed more structural distortion, larger specific surface area, and narrower band gap, resulting in its higher photo-Fenton-like catalytic activity toward the degradation of organics. In organic-containing solution, in which the initial solution pH = 5, catalyst dosage = 1 g/L and H2O2 concentration = 10 mM, 98.2% of rhodamine B, 31.1% of methyl orange, 67.7% of ketoprofen, or 96.4% of tetracycline was removed after 90-min exposure to simulated visible light. Our findings revealed that variation of Ln site on rare-earth orthoferrites was an effective strategy for optimizing their organic removal via visible-light-induced photo-Fenton reaction.

TiO2 Combining Spherical Activated Carbon Photocatalysts and Their Physicochemical and Photocatalytic Activity

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Hyuk;Chen, Ming-Liang;Zhang, Feng-Jun;Zhang, Kan;Choi, Jong-Geun;Meng, Ze-Da
    • 한국재료학회지
    • /
    • 제20권10호
    • /
    • pp.535-542
    • /
    • 2010
  • In this study, we used coal-based activated carbons and charcoal as startingmaterials, phenolic resin (PR) as a binder, and TOS as a titanium source to prepare $TiO_2$ combining spherical shaped activated carbon photocatalysts. The textural properties of the activated carbon photocatalysts (SACP) were characterized by specific surface area (BET), energy dispersive X-ray spectroscopy (XRD), scanning electron microscopy (SEM), iodine adsorption, strength intensity, and pressure drop. The photocatalytic activities of the SACPs were characterized by degradation of the organic dyes Methylene Blue (MB), Methylene Orange (MO), and Rhodamine B (Rh. B) and a chemical oxygen demand (COD) experiment. The surface properties are shown by SEM. The XRD patterns of the composites showed that the SACP composite contained a typical single, clear anatase phase. The EDX spectro for the elemental indentification showed the presence of C and O with Ti peaks. According to the results, the spherical activated carbon photocatalysts sample of AOP prepared with activated carbon formed the best spherical shape, a high BET surface area, iodine adsorption capability and strength value, and the lowest pressure drop, and the photocatalytic activity was better than samples prepared with charcoal. We compared the degradation effects among three kinds of dyes. MB solution degraded with the SACP is better than any other dye solutions.