DOI QR코드

DOI QR Code

Hydrothermal Synthesis of Cubic Mesocrystal CeO2 for Visible Photocatalytic Degradation of Rhodamine B

  • Yang, Hexiang (School of Material Science and Engineering, Jiangsu University) ;
  • Zhou, Mengkai (School of Material Science and Engineering, Jiangsu University) ;
  • Meng, Zeda (School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology) ;
  • Zhu, Lei (Department of Advanved Materials Science and Engineering, Hanseo University) ;
  • Chen, Zhigang (School of Material Science and Engineering, Jiangsu University) ;
  • Oh, Won-Chun (Department of Advanved Materials Science and Engineering, Hanseo University)
  • Received : 2015.02.03
  • Accepted : 2015.03.05
  • Published : 2015.03.27

Abstract

Cubic mesocrystal $CeO_2$ was synthesized via a hydrothermal method with glutamic acid ($C_5H_9NO_4$) as a template. The XRD pattern of a calcined sample shows the face-centered cubic fluorite structure of ceria. Transmission electron microscopy (TEM) and the selected-area electron diffraction (SAED) pattern revealed that the submicron cubic mesocrystals were composed of many small crystals attached to each other with the same orientation. The UV-visible adsorption spectrum exhibited the red-shift phenomenon of mesocrystal $CeO_2$ compared to commercial $CeO_2$ particles; thus, the prepared materials show tremendous potential to degrade organic dyes under visible light illumination. With a concentration of a rhodamine B solution of 20 mg/L and a catalyst amount of 0.1 g/L, the reaction showed higher photocatalytic performance following irradiation with a xenon lamp (${\geq}380nm$). The decoloring rate can exceed 100% after 300 min.

Keywords

References

  1. D. Y. Xu, F. Cheng, Q. Z. Lu and P. Dai, Ind. Eng. Chem. Res., 53, 2625 (2014). https://doi.org/10.1021/ie4033022
  2. C. Karunakaran and P. Gomathisankar, ACS Sustainable Chem. Eng., 1, 1555 (2013). https://doi.org/10.1021/sc400195n
  3. K. C. Leonard, K. M. Nam, H. C. Lee, S. H. Kang, H. S. Park and A. J. Bard, J. Phys. Chem. C, 117, 15901 (2013). https://doi.org/10.1021/jp403506q
  4. L. Trotochaud, T. J. Mills and S. W. Boettcher, J. Phys. Chem. Lett., 4, 931(2013). https://doi.org/10.1021/jz4002604
  5. S. B. Khan, M. Faisal, M. M. Rahman and A. Jamal, Sci. Total Environ., 409, 2987(2011). https://doi.org/10.1016/j.scitotenv.2011.04.019
  6. J. Qian, Z. Chen, C. Liu, X. Lu, F. Wang and M. Wang, Mater. Sci. in Semicon Process, 25, 27 (2014). https://doi.org/10.1016/j.mssp.2013.09.020
  7. X. Lu, X. Li, J. Qian and Z. Chen, Powder Technol., 239, 415 (2013). https://doi.org/10.1016/j.powtec.2013.01.060
  8. J. Qian, C. Liu, F. Chen, Z. Chen, Y. Zhang and M. Wang, Asian J. Chem., 26(5), 1376 (2014).
  9. X. Liu, K. Zhou, L. Wang, B. Y. Wang and Y. D. Li, J. Am. Chem. Soc., 131(9), 3140 (2009). https://doi.org/10.1021/ja808433d
  10. L. C. Shuller-Nickles, R. C. Ewing and U. Becker, J. Solid State Chem., 197, 550 (2013) https://doi.org/10.1016/j.jssc.2012.08.033
  11. N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A. I. Minett and J. Chen, ACS Appl. Mater. Interfaces, 4, 3718 (2012). https://doi.org/10.1021/am300812n
  12. R. Yu, L. Yan, P. Zheng, J. Phys. Chem. C, 112, 19896 (2008). https://doi.org/10.1021/jp806092q
  13. J. Qian, Z. Chen, C. Liu, F. Wang, Y. Zhang and M. Wang, Chin. Sci. Bull., 59(26), 3260 (2014). https://doi.org/10.1007/s11434-014-0306-6
  14. M. Niederberger and H. Colfen, Phys. Chem. Chem. Phys., 8, 3271 (2006). https://doi.org/10.1039/b604589h
  15. J. Fang, B. Dinga and H. Gleiterb, Chem. Soc. Rev., 40, 5347 (2011). https://doi.org/10.1039/c1cs15043j
  16. X. Geng, L. Liu, J. Jiang and S. Yu, Cryst. Growth Des., 10, 3448 (2010). https://doi.org/10.1021/cg100206y
  17. M. S. Mo, S. H. Lim, Y. W. Mai, R. K. Zheng and S. P. Ringer, Adv. Mater., 20, 339 (2008). https://doi.org/10.1002/adma.200701137
  18. X. W. Lu, X. Z Li, F. Chen, C. Y. Ni and Z. G. Chen, J. Alloys Compd., 476, 958 (2009). https://doi.org/10.1016/j.jallcom.2008.09.198
  19. X. Z. Li, C. Y. Ni, F. Chen, X. W. Lu and Z. G. Chen, J. Solid State Chem., 182, 2185 (2009). https://doi.org/10.1016/j.jssc.2009.05.001
  20. X. D. Feng, D. C. Sayle, Z. L. Wang, M. S. Paras, B. Santora, A. C. Sutorik, T. Sayle, Y. Yang, Y. Ding, X. D. Wang and Y. S. Her, Science, 312, 1504 (2006). https://doi.org/10.1126/science.1125767
  21. K. Kaneko, K. Inoke, B. Freitag, A. B. Hungria, P. A. Midgley, T. W. Hansen, J. Zhang, S. Ohara and T. Adschiri, Nano Lett., 7, 421 (2007). https://doi.org/10.1021/nl062677b
  22. Z. L.Wang and X. D. Feng, J. Phys. Chem. B, 107, 13563 (2003). https://doi.org/10.1021/jp036815m
  23. Q. Li, Y. Zhang, G. Chen, J. Fan, H. Lan and Y. Yang, J. Catal., 273, 167 (2010). https://doi.org/10.1016/j.jcat.2010.05.008
  24. Y. Chen, T. Liu, C. Chen, W. Guo, R. Sun, S. Lv, M. Saito, S. Tsukimoto and Z. Wang Ceram. Int., 39, 6607 (2013). https://doi.org/10.1016/j.ceramint.2013.01.096
  25. X. W. Liu, K. B. Zhou and L. Wang, J. Am. Chem. Soc., 131, 3140 (2009). https://doi.org/10.1021/ja808433d
  26. Y. S. Chaudhary, S. Panigrahi, S. Nayak, B. Satpati, S. Bhattacharjeea and N. Kulkarnic, J. Mater. Chem., 20, 2381 (2010). https://doi.org/10.1039/b922914k