DOI QR코드

DOI QR Code

Development of Microstructures and Mechanical Properties in Differential Speed Rolled Ni-30Cr Alloy

이주속압연된 Ni-30Cr 합금의 미세조직과 기계적 특성 발달

  • 임용덕 (한국생산기술연구원 비철금속소재부품연구실용화그룹) ;
  • 박형기 (한국생산기술연구원 비철금속소재부품연구실용화그룹) ;
  • 송국현 (한국생산기술연구원 비철금속소재부품연구실용화그룹)
  • Received : 2015.02.05
  • Accepted : 2015.03.06
  • Published : 2015.03.27

Abstract

We evaluated the developed microstructures and mechanical properties of a severely plastically deformed Ni-30Cr alloy. Normal rolling and differential speed rolling were used as deformation processes, and the thicknesses of the specimens were reduced to 68 % of the original thickness after holding at $700^{\circ}C$ for 10 min and annealing at $700^{\circ}C$ for 40 min to obtain a fully recrystallized microstructure. Electron backscattering diffraction was used to analyze the characteristic distribution of the grain boundaries on the deformed and annealed specimens. Differential speed rolling was more effective for refining grains in comparison with normal rolling. The grain size was refined from 33 mm in the initial material to 8.1 mm with normal rolling and 5.5 mm with differential speed rolling. The more refined grain in the differential-speed-rolled material directly resulted in increases in the yield and tensile strengths by 68 % and 9.0%, respectively, compared to normal rolling. We systematically explain the relationship between the grain refinement and mechanical properties through a plastically deformed Ni-30Cr alloy based on the development of a deformation texture. The results of our study show that the DSR process is very effective when used to enhance the mechanical properties of a material through grain refinement.

Keywords

References

  1. J. R. Davis, Nickel, cobalt, and their alloys, p.442, ASM international, USA (2000).
  2. F. Habashi, Alloys: preparation, properties, applications, p.314, John Wiley & Sons, Germany (2008).
  3. K. Neishi, Z. Horita and T. G. Langdon, Mater. Sci. Eng., 325(1-2), 54 (2002). https://doi.org/10.1016/S0921-5093(01)01404-6
  4. V. Novikov, Grain growth and control of microstructure and texture in polycrystalline materials, p.174, CRC, USA (1997).
  5. Y. Chino, K. Sassa and M. Mabuchi, J. Mater. Sci., 44(7), 1821 (2009). https://doi.org/10.1007/s10853-009-3248-7
  6. H. Watanabe, T. Mukai and K. Ishikawa, J. Mater. Sci., 39(4), 1477 (2004). https://doi.org/10.1023/B:JMSC.0000013922.16079.d3
  7. Y. H. Zhao, X. Z. Liao, Z. Jin, R. Z. Valiev and Y. T. Zhu, Acta Mater., 52(15), 4589 (2004). https://doi.org/10.1016/j.actamat.2004.06.017
  8. A. P. Zhilyaev, G. V. Nurislamova, B. K. Kim, M. D. Baro, J. A. Szpunar and T. G. Langdon, Acta Mater., 51(3), 753 (2003). https://doi.org/10.1016/S1359-6454(02)00466-4
  9. J. Suharto and Y. G. Ko, Mater. Sci. Eng., 558(0), 90 (2012). https://doi.org/10.1016/j.msea.2012.07.081
  10. W. Polkowski, P. Jozwik, M. Polanski and Z. Bojar, Mater. Sci. Eng., 564(0), 289(2013). https://doi.org/10.1016/j.msea.2012.12.006
  11. Y. G. Ko, J. Suharto, J. S. Lee, B. H. Park and D. H. Shin, Met. Mater. Int., 19(3), 603 (2013). https://doi.org/10.1007/s12540-013-3033-7
  12. S. H. Lee, D. J. Yoon, T. Sakai, S. H. Kim and S. Z. Han, J. Kor. Inst. Met. Mater. (in Korea), 47(2) 121 (2009).
  13. F. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, 2nd ed., p.574, Elsevier, UK (2004).
  14. Y. Prasad and N. Ravichandran, Bull. Mater. Sci., 14(5), 1241 (1991). https://doi.org/10.1007/BF02744618
  15. S. Gourdet and F. Montheillet, Acta Mater., 51(9), 2685 (2003). https://doi.org/10.1016/S1359-6454(03)00078-8
  16. W. F. Hosford, Mechanical behavior of materials, p.425, Cambridge University Press, UK (2010).
  17. G. E. Dieter and D. Bacon, Mechanical metallurgy, p.751, McGraw-Hill, UK (1986).
  18. J. Rosler, H. Harders and M. Baker, Mechanical behaviour of engineering materials: metals, ceramics, polymers, and composites, p.534, Springer, USA (2007).