• Title/Summary/Keyword: Reynolds Averaged Navier-Stokes(RANS)

Search Result 248, Processing Time 0.025 seconds

Comparative study of laminar and turbulent models for three-dimensional simulation of dam-break flow interacting with multiarray block obstacles (다층 블록 장애물과 상호작용하는 3차원 댐붕괴흐름 모의를 위한 층류 및 난류 모델 비교 연구)

  • Chrysanti, Asrini;Song, Yangheon;Son, Sangyoung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1059-1069
    • /
    • 2023
  • Dam-break flow occurs when an elevated dam suddenly collapses, resulting in the catastrophic release of rapid and uncontrolled impounded water. This study compares laminar and turbulent closure models for simulating three-dimensional dam-break flows using OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) model, specifically the k-ε model, is employed to capture turbulent dissipation. Two scenarios are evaluated based on a laboratory experiment and a modified multi-layered block obstacle scenario. Both models effectively represent dam-break flows, with the turbulent closure model reducing oscillations. However, excessive dissipation in turbulent models can underestimate water surface profiles. Improving numerical schemes and grid resolution enhances flow recreation, particularly near structures and during turbulence. Model stability is more significantly influenced by numerical schemes and grid refinement than the use of turbulence closure. The k-ε model's reliance on time-averaging processes poses challenges in representing dam-break profiles with pronounced discontinuities and unsteadiness. While simulating turbulence models requires extensive computational efforts, the performance improvement compared to laminar models is marginal. To achieve better representation, more advanced turbulence models like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are recommended, necessitating small spatial and time scales. This research provides insights into the applicability of different modeling approaches for simulating dam-break flows, emphasizing the importance of accurate representation near structures and during turbulence.

Numerical Simulation of Turbulent Flow around 2-D Airfoils in Ground Effect (CFD에 의한 2차원 지면 효과익 주위의 난류유동계산)

  • H.H. Chun;R.H. Chang;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.28-40
    • /
    • 2002
  • Turbulent flows around two-dimensional wing sections in ground effect are analysed by incompressible RANS equations and a finite difference method. The Baldwin-Lomax algebraic turbulence model is used to simulate high Reynolds number flows. The main purpose of this study is to clarify the two-dimensional ground effect and its flow characteristics due to different ground boundary conditions, i.e., moving and fixed bottom boundary. As a first step, to validate the present numerical code, the computational result of Clark-Y(t/C 11.7%) is compared with published numerical results and experimental data. Then, NACA4412 section in ground effect is calculated for various ground clearances with two bottom boundary conditions. According to the computational results, the difference in the lift and moment simulated with the two bottom boundary conditions is negligible, but the drag force simulated by the fixed bottom is to some extent smaller than that by the moving bottom. Therefore, it can be concluded that the drag force measured in a wind tunnel with the fixed bottom could be smaller than that with the moving bottom.

Measurement of Turbulence Properties at the Time of Flow Reversal Under High Wave Conditions in Hujeong Beach (후정해변 고파랑 조건하에서 파랑유속 방향전환점에서 발생하는 난류성분의 측정)

  • Chang, Yeon S.;Do, Jong Dae;Kim, Sun-Sin;Ahn, Kyungmo;Jin, Jae-Youll
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.206-216
    • /
    • 2017
  • The temporal distribution of the turbulence kinetic energy (TKE) and the vertical component of Reynolds stresses ($-{\bar{u^{\prime}w^{\prime}}}$) was measured during one wave period under high wave energy conditions. The wave data were obtained at Hujeong Beach in the east coast of Korea at January 14~18 of 2017 when an extratropical cyclone was developed in the East Sea. Among the whole thousands of waves measured during the period, hundreds of regular waves that had with similar pattern were selected for the analysis in order to give three representing mean wave patterns using the ensemble average technique. The turbulence properties were then estimated based on the selected wave data. It is interesting to find out that $-{\bar{u^{\prime}w^{\prime}}}$ has one clear peak near the time of flow reversal while TKE has two peaks at the corresponding times of maximum cross-shore velocity magnitudes. The distinguished pattern of Reynolds stress indicates that vertical fluxes of such properties as suspended sediments may be enhanced at the time when the horizontal flow direction is reversed to disturb the flows, supporting the turbulence convection process proposed by Nielsen (1992). The characteristic patterns of turbulence properties are examined using the CADMAS-SURF Reynolds-Averaged Navier-Stokes (RANS) model. Although the model can reasonably simulate the distribution of TKE pattern, it fails to produce the $-{\bar{u^{\prime}w^{\prime}}}$ peak at the time of flow reversal, which indicates that the application of RANS model is limited in the prediction of some turbulence properties such as Reynolds stresses.

Influence of Leading Edge Radii on Hydrodynamic Performances of a Foil Section

  • Ahn, Jong-Woo;Moon, Il-Sung;Lee, Jin-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.2
    • /
    • pp.1-16
    • /
    • 1999
  • The incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are solved using the standard $\textsc{k}-\varepsilon$ turbulence model and a finite volume method(FVM)with an O-type grid system. The computed results for its performance test are in good agreement with the published experimental data. The present method is applied to the study on the leading edge radius of a hydrofoil section Calculated results suggest that the leading edge radius has some effects on cavitation performances of a 2-D foil. A natural leading edge radius for the NACA66 section is determined from this study.

  • PDF

A Computational Study on the Pressure Loss of Intake System for the Combat Vehicle (전투차량 흡기시스템의 압력손실에 관한 수치적 연구)

  • Moon, Seong-Mok;An, Su-Hong;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.25-31
    • /
    • 2012
  • A computational study on the improvement of the pressure loss of intake system, which is located at engine manifold of the combat vehicle, has been conducted using a finite-volume-based, Reynolds-Averaged Navier-Stokes (RANS) solver. The computational result of the pressure loss through the air cleaner is in good agreement with equivalent experimental data. A parametric study was done for improving of the pressure loss of intake system over the baseline case. The effects of five primary parameters such as the height of inlet, the width of interconnection pipe, the shape of drain chamber and the diameter of filter housing were considered in this study. Consequently, this computational investigation can contribute to finding an optimal guideline for the idea of improvement in the pressure loss of intake system.

Numerical investigations of tip clearance flow characteristics of a pumpjet propulsor

  • Lu, Lin;Gao, Yuefei;Li, Qiang;Du, Lin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.307-317
    • /
    • 2018
  • In this study, numerical investigations of the tip clearance flow characteristics of a pumpjet propulsor based on Computational Fluid Dynamics (CFD) method have been presented. The Zwart-Gerber-Belamri (Z-G-B) cavitation model based on Reynolds Averaged Navier-Stokes (RANS) method is employed. The structured gird is applied. The formation and development of the tip clearance flows has been investigated and presented. The structure of the tip leakage vortex has been shown. The radial distributions of different velocity components with different Span along the axial direction have been carried out to present the influence of the tip clearance flow on the main flow. In addition, the influences of the tip clearance size on the pumpjet propulsor performance, including the impact on the velocity flow fields and the cavitation characteristic, have been presented.

Numerical Analysis on the Mode Transition of Integrated Rocket-Ramjet and Unstable Combusting Flow-Field (일체형 로켓-램제트 모드 천이 및 불안정 연소 유동장 해석)

  • Ko Hyun;Park Byung-Hoon;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.334-342
    • /
    • 2005
  • A numerical analysis is performed using two dimensional axisymmetric RANS (Reynolds Averaged Navier-Stokes) equations system on the transition sequence of the Integrated Rocket Ramjet and the unsteady reacting flow-field in a ramjet combustor during unstable combustion. The mode transition of an axisymmetric ramjet is numerically simulated starting from the initial condition of the boost end phase of the entire ramjet. The unsteady reacting flow-field within combustor is computed for varying injection area. In calculation results of the transition, the terminal normal shock is occurred at the downstream of diffuser throat section and no notable combustor pressure oscillation is observed after certain time of the inlet port cover open. For the case of a small injection area at the same equivalence ratio, periodic pressure oscillation in the combustor leads to the terminal shock expulsion from the inlet and hence the buzz instability occurred.

  • PDF

Analysis of the flood Characteristics in the Woo-Ee Stream Using FLOW-3D (FLOW-3D를 이용한 우이천의 홍수특성 분석)

  • Yoon, Sun-Kwon;Moon, Young-Il;Kim, Jong-Suk;Oh, Keun-Taek;Lee, Su-Gon
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.603-607
    • /
    • 2007
  • Recently, the frequency of unexpecting heavy rains has been increased due to abnormal climate and extreme rainfall. There was a limit to analyze one dimension or two dimension stream flow of domestic rivers that was applied simple momentum equation and fixed energy conservation. Therefore, hydrodynamics flow analysis in rivers has been needed three dimensional numerical analysis for correct stream flow interpolation. In this study, CFD model on FLOW-3D was applied to stream flow analysis, which solves three dimension RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as $k-{\backepsilon}$, RNG $k-{\backepsilon}$ and LES. Those numerical analysis results have been illustrated to bends and junctions by the turbulence energy effects, velocity of flow distributions, water level pressure distributions and eddy flows.

  • PDF

SHIP RESISTANCE AND PROPULSION PERFORMANCE TEST USING HYBRID MESH AND SLIDING MESH (Hybrid mesh 및 sliding mesh를 이용한 선박 저항추진 성능 시험)

  • Park, Bum-Jin;Rhee, Shin-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.77-83
    • /
    • 2009
  • In this study, we conducted resistance and propulsion performance test of ship composed of the Resistance Test, Propeller Open Water Test and Self Propulsion Test using the CFD(Computational Fluid Dynamics). We used commercial RANS(Reynolds Averaged Navier Stokes equation) solver, as a calculating tool. The unstructured grids were used in a bow and stern of ship, having complex shape, for a convenience of generating grids, and the structured grids were adopted in a central hull and rest of hull having a relatively simple shape which is called hybrid grid method. In addition, The sliding mesh method was adopted to rotate a propeller directly in the Propeller Open Water and Self Propulsion Test. The Resistance Test and Self Propulsion Test were calculated using Volume of Fluid (VOF) model and considering a free surface. And all The three cases were applied realizable k-epsilon model as the turbulence model. The results of calculations were verified for the suitability of calculations by comparing MOERI's EFD results.

  • PDF

THE COMPUTATION OF UNSTEADY FLOWS AROUND THREE DIMENSIONAL WINGS ON DYNAMICALLY DEFORMING MESH (변형격자계를 이용한 3차원 날개 주변의 비정상 유동 해석)

  • Yoo, Il-Yong;Lee, Seung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.34-37
    • /
    • 2009
  • Deforming mesh should be used when bodies are deforming or moving relative to each other due to the presence of aerodynamic forces and moments. Also, the flow solver for such a flow problem should satisfy the geometric conservation law to ensure the accuracy of the solutions. In this paper, a RANS(Reynolds Averaged Navier-Stokes) solver including automatic mesh capability using TFI(Transfinite Interpolation) method and GCL is developed and applied to flows induced by oscillating wings with given frequencies. The computations are performed both on deforming meshes and on rigid meshes. The computational results are compared with experimental data, which shows a good agreement.

  • PDF