DOI QR코드

DOI QR Code

Numerical investigations of tip clearance flow characteristics of a pumpjet propulsor

  • Lu, Lin (School of Mechatronic Engineering, North University of China) ;
  • Gao, Yuefei (School of Mechatronic Engineering, North University of China) ;
  • Li, Qiang (School of Mechatronic Engineering, North University of China) ;
  • Du, Lin (College of Engineering, Florida Institute of Technology)
  • Received : 2017.05.27
  • Accepted : 2017.09.03
  • Published : 2018.05.31

Abstract

In this study, numerical investigations of the tip clearance flow characteristics of a pumpjet propulsor based on Computational Fluid Dynamics (CFD) method have been presented. The Zwart-Gerber-Belamri (Z-G-B) cavitation model based on Reynolds Averaged Navier-Stokes (RANS) method is employed. The structured gird is applied. The formation and development of the tip clearance flows has been investigated and presented. The structure of the tip leakage vortex has been shown. The radial distributions of different velocity components with different Span along the axial direction have been carried out to present the influence of the tip clearance flow on the main flow. In addition, the influences of the tip clearance size on the pumpjet propulsor performance, including the impact on the velocity flow fields and the cavitation characteristic, have been presented.

Keywords

References

  1. ANSYS, 2012. ANSYS CFX and ICEM Release 14.5. ANSYS Inc, Canonsburg (PA).
  2. Arazgaldi, R., Hajilouy, A., Farhanieh, B., 2009. Experimental and numerical investigation of marine propeller cavitation. Scientia Eranica Trans. B Mech. Eng. 16 (6), 525-533.
  3. Brennen, C.E., 2013. A review of the dynamics of cavitating pumps. ASME J. Fluids Eng. 135 (6), 061301. https://doi.org/10.1115/1.4023663
  4. Cheah, K.W., Lee, T.S., Winoto, S.H., Zhao, Z.M., 2007. Numerical flow simulation in a centrifugal pump at design and off-design conditions. Int. J. Rotat. Mach. 2007 http://dx.doi.org/10.1155/2007/83641.
  5. Ivanell, S., 2001. Hydrodynamic Simulation of a torpedo with Pump Jet Propulsion System. Royal Institute of Technology, Stockholm, Sweden, p. 77 (Master thesis).
  6. Ji, B., Luo, X., Wu, Y., Liu, S., Xu, H., Oshima, A., 2010. Numerical investigation of unsteady cavitating turbulent flow around a full scale marine propeller. J. Hydrodyn. Ser. B 22 (5), 747-752. https://doi.org/10.1016/S1001-6058(10)60025-X
  7. Ji, B., Luo, X., Wu, Y., 2014a. Unsteady cavitation characteristics and alleviation of pressure fluctuations around marine propellers with different skew angles. J. Mech. Sci. Technol. 28 (4), 1339-1348. https://doi.org/10.1007/s12206-013-1166-8
  8. Ji, B., Luo, X., Arndt, R.E., Wu, Y., 2014b. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cav- itationevortex interaction. Ocean Eng. 87, 64-77. https://doi.org/10.1016/j.oceaneng.2014.05.005
  9. Ji, B., Luo, X.W., Arndt, R.E., Peng, X., Wu, Y., 2015. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil. Int. J. Multiph. Flow 68, 121-134. https://doi.org/10.1016/j.ijmultiphaseflow.2014.10.008
  10. Ji, B., Long, Y., Long, X.P., Qian, Z.D., Zhou, J.J., 2017. Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions. J. Hydrodyn. Ser. B 29 (1), 27-39. https://doi.org/10.1016/S1001-6058(16)60715-1
  11. Li, D., Grekula, M., Lindell, P., Hallander, J., 2012. Prediction of cavitation for the INSEAN propeller E779A operating in uniform flow and non-uniform wakes. In: Proceedings of the 8th International Symposium on Cavitation. Singapore, pp. 368-373.
  12. Lindau, J.W., Boger, D.A., Medvitz, R.B., Kunz, R.F., 2005. Propeller cavitation breakdown analysis. J. Fluids Eng. 127 (5), 995-1002. https://doi.org/10.1115/1.1988343
  13. Liu, Y., Zhao, P., Wang, Q., Chen, Z., 2012. URANS computation of cavitating flows around skewed propellers. J. Hydrodyn. Ser. B 24 (3), 339-346. https://doi.org/10.1016/S1001-6058(11)60253-9
  14. Lu, L., Pan, G., Sahoo, P.K., 2016. CFD prediction and simulation of a pumpjet propulsor. Int. J. Nav. Arch. Ocean Eng. 8 (1), 110-116. https://doi.org/10.1016/j.ijnaoe.2015.10.001
  15. Luo, X.W., Bin, J.I., Tsujimoto, Y., 2016. A review of cavitation in hydraulic machinery. J. Hydrodyn. 28 (3), 335-358. https://doi.org/10.1016/S1001-6058(16)60638-8
  16. Morgut, M., Nobile, E., 2012. Numerical predictions of cavitating flow around model scale propellers by CFD and advanced model calibration. Int. J. Rotat. Mach. 2012 http://dx.doi.org/10.1155/2012/618180.
  17. Muscari, R., Di Mascio, A., 2011. Numerical simulation of the flow past a rotating propeller behind a hull. In: Proceedings of the 2nd International Symposium on Marine Propulsors. Hamburg, Germany, June.
  18. Pan, G., Lu, L., 2016. Numerical simulation of unsteady cavitating flows of pumpjet propulsor. Ships Offshore Struct. 11 (1), 64-74.
  19. Park, W., Jang, J.H., Chun, H.H., Kim, C.M., 2005. Numerical flow and performance analysis of waterjet propulsion system. Ocean Eng. 32 (14-15), 1740-1761. https://doi.org/10.1016/j.oceaneng.2005.02.004
  20. Rhee, S.H., Joshi, S., 2005. Computational validation for flow around a marine propeller using unstructured mesh based Navier-Stokes solver. JSME Int. J. Ser. B 48 (3), 562-570. https://doi.org/10.1299/jsmeb.48.562
  21. Salvatore, F., Streckwall, H., Van Terwisga, T., 2009. Propeller cavitation modelling by CFD-results from the VIRTUE 2008 Rome workshop. In: Proceedings of the First International Symposium on Marine Propulsors, Trondheim, Norway, June.
  22. Shin, K.W., 2010. Cavitation Simulation on Marine Propellers. Technical University of Denmark, Copenhagen.
  23. Singhal, A.K., Athavale, M.M., Li, H., Jiang, Y., 2002. Mathematical basis and validation of the full cavitation model. T ASME J. Fluids Eng. 124 (3), 617-624. https://doi.org/10.1115/1.1486223
  24. Suryanarayana, C., Satyanarayana, B., Ramji, K., Saiju, A., 2010a. Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel. Int. J. Nav. Arch. Ocean Eng. 2 (1), 24-33. https://doi.org/10.2478/IJNAOE-2013-0016
  25. Suryanarayana, C., Satyanarayana, B., Ramji, K., Saiju, A., 2010b. Performance evaluation of an underwater body and pumpjet by model testing in cavitation tunnel. Int. J. Nav. Arch. Ocean Eng. 2 (1), 57-67. https://doi.org/10.2478/IJNAOE-2013-0020
  26. Suryanarayana, C., Satyanarayana, B., Ramji, K., Rao, M.N., 2010c. Cavitation studies on axi-symmetric underwater body with pumpjet propulsor in cavitation tunnel. Int. J. Nav. Arch. Ocean Eng. 2 (4), 185-194. https://doi.org/10.2478/IJNAOE-2013-0035
  27. Watanabe, T., Kawamura, T., Takekoshi, Y., Maeda, M., Rhee, S.H., 2003. Simulation of steady and unsteady cavitation on a marine propeller using a RANS CFD code. In: Proceedings of 5th International Symposium on Cavitation, Osaka, Japan, November.
  28. Zhang, D., Shi, W., Chen, B., Guan, X., 2010. Unsteady flow analysis and exper- imental investigation of axial-flow pump. J. Hydrodyn. Ser. B 22 (1), 35-43. https://doi.org/10.1016/S1001-6058(09)60025-1
  29. Zhu, Z., Fang, S., 2012. Numerical investigation of cavitation performance of ship propellers. J. Hydrodyn. Ser. B 24 (3), 347-353. https://doi.org/10.1016/S1001-6058(11)60254-0

Cited by

  1. Ensemble of surrogate based global optimization methods using hierarchical design space reduction vol.58, pp.2, 2018, https://doi.org/10.1007/s00158-018-1906-6
  2. A Review of Tip Clearance in Propeller, Pump and Turbine vol.11, pp.9, 2018, https://doi.org/10.3390/en11092202
  3. Design and Optimization of a Blended-Wing-Body Underwater Glider vol.491, pp.None, 2019, https://doi.org/10.1088/1757-899x/491/1/012001
  4. Numerical investigation of tip flow dynamics and main flow characteristics with varying tip clearance widths for an axial-flow pump vol.233, pp.4, 2018, https://doi.org/10.1177/0957650918812541
  5. Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow vol.12, pp.None, 2018, https://doi.org/10.1016/j.ijnaoe.2019.10.001
  6. Dynamic Analysis of Cavitation Tip Vortex of Pump-Jet Propeller Based on DES vol.10, pp.17, 2018, https://doi.org/10.3390/app10175998
  7. Numerical simulation of vortex instabilities in the wake of a preswirl pumpjet propulsor vol.33, pp.5, 2021, https://doi.org/10.1063/5.0039935
  8. Influence of Various Stator Parameters on the Open-Water Performance of Pump-Jet Propulsion vol.9, pp.12, 2021, https://doi.org/10.3390/jmse9121396