DOI QR코드

DOI QR Code

Measurement of Turbulence Properties at the Time of Flow Reversal Under High Wave Conditions in Hujeong Beach

후정해변 고파랑 조건하에서 파랑유속 방향전환점에서 발생하는 난류성분의 측정

  • Chang, Yeon S. (Coastal Disaster Prevention Research Center, Korea Institute of Ocean Science and Technology) ;
  • Do, Jong Dae (Coastal Morphodynamics Section, Korea Institute of Ocean Science and Technology) ;
  • Kim, Sun-Sin (Operational Oceanography Research Center, Korea Institute of Ocean Science and Technology) ;
  • Ahn, Kyungmo (School of Spatial Environment System Engineering, Handong Global University) ;
  • Jin, Jae-Youll (East Sea Research Institute, Korea Institute of Ocean Science and Technology)
  • Received : 2017.08.18
  • Accepted : 2017.08.28
  • Published : 2017.08.31

Abstract

The temporal distribution of the turbulence kinetic energy (TKE) and the vertical component of Reynolds stresses ($-{\bar{u^{\prime}w^{\prime}}}$) was measured during one wave period under high wave energy conditions. The wave data were obtained at Hujeong Beach in the east coast of Korea at January 14~18 of 2017 when an extratropical cyclone was developed in the East Sea. Among the whole thousands of waves measured during the period, hundreds of regular waves that had with similar pattern were selected for the analysis in order to give three representing mean wave patterns using the ensemble average technique. The turbulence properties were then estimated based on the selected wave data. It is interesting to find out that $-{\bar{u^{\prime}w^{\prime}}}$ has one clear peak near the time of flow reversal while TKE has two peaks at the corresponding times of maximum cross-shore velocity magnitudes. The distinguished pattern of Reynolds stress indicates that vertical fluxes of such properties as suspended sediments may be enhanced at the time when the horizontal flow direction is reversed to disturb the flows, supporting the turbulence convection process proposed by Nielsen (1992). The characteristic patterns of turbulence properties are examined using the CADMAS-SURF Reynolds-Averaged Navier-Stokes (RANS) model. Although the model can reasonably simulate the distribution of TKE pattern, it fails to produce the $-{\bar{u^{\prime}w^{\prime}}}$ peak at the time of flow reversal, which indicates that the application of RANS model is limited in the prediction of some turbulence properties such as Reynolds stresses.

교란운동에너지(TKE)와 레이놀즈 응력의 수직성분($-{\bar{u^{\prime}w^{\prime}}}$)에 대한 한 주기 파장 안에서의 시간변화를 관측자료를 사용하여 분석하였다. 관측자료는 동해에서 온대성저기압이 발달하였던 2017년 1월 14일부터 18일까지 동해안 후정해변에서 측정한 파랑자료를 사용하였다. 이 기간 동안 관측된 모든 파랑자료들 중에서 비슷한 형태를 갖는 수백 개의 규칙파들을 구분하였으며 이 자료를 토대로 Ensemble Average 기법을 사용하여 이 기간 파랑특성을 대표하는 세 개의 평균파를 계산하였다. 그리고 이 평균파를 기준으로 각 파의 요동을 측정하여 한 주기 동안의 교란운동에너지와 레이놀즈 응력을 계산하였다. 이렇게 계산된 자료들을 분석한 결과 교란운동에너지는 파랑의 평균유속과 비슷한 분포를 나타내었으나(즉 유속이 최대값을 나타낼 때 교란운동에너지도 최대값을 나타내었다), $-{\bar{u^{\prime}w^{\prime}}}$는 파랑의 수평유속 방향이 전환되는 '방향전환점'에서 가파르게 증가하는 경향을 나타내었다. 이러한 $-{\bar{u^{\prime}w^{\prime}}}$의 독특한 분포는 Nielsen(1992)에 의해 제안된 난류 convection 현상을 뒷받침하는 발견으로 퇴적물과 같은 물질들의 부유현상이 파랑의 '방향전환점(한 주기 안에서 파랑의 횡단방향 유속 부호가 바뀌는 시점)'에서 촉진될 수 있음을 보여준다. 이렇게 관측된 난류에너지 분포 특성을 CADMAS-SURF 모델을 사용하여 구현해 보았다. 그 결과 교란운동에너지의 경우 모델결과와 관측치 사이에 유사성이 발견되었으나 레이놀즈 응력($-{\bar{u^{\prime}w^{\prime}}}$)의 경우 모델이 '방향전환점'에서의 증가현상을 구현해 내지 못하였다. 이는 CADMAS-SURF와 같은 Reynolds-Averaged Navier-Stokes(RANS) 모델들이 가지는 한계점으로 RANS 모델의 경우 레이놀즈 응력과 같은 난류에너지가 평균유속의 분포에 강한 영향을 받기 때문인 것으로 판명되었다.

Keywords

References

  1. Amoudry, L.O., Souza, A.J., Thorne, P.D. and Liu, P. (2013). Toward representing wave-induced sediment suspension over sand ripples in RANS models. J. Geophys. Res., 118(1), 658-673.
  2. Boussinesq, J. (1877). Essai sur la theorie des eaux courantes. Memoires presentes par divers savants a l'Academie des Sciences, 23(1), 1-680.
  3. Chang, Y.S. and Hanes, D.M. (2004). Suspended sediment and hydrodynamics above mildly sloped large wave ripples. J. Geophys. Res., 109(C7).
  4. Chang, Y.S., Hwang, J.H. and Park, Y.-G. (2017). Sensitivity of suspension pattern of numerically simulated sediments to oscillating periods of channel flows over a rippled bed. KSCE J. Civil Eng., 21(5), 1503-1515. https://doi.org/10.1007/s12205-016-0516-3
  5. Chang, Y.S. and Park, Y.-G. (2016). Suspension of sediment particles over a ripple due to turbulent convection under unsteady flow conditions. Ocean Sci. J., 51(1), 127-135. https://doi.org/10.1007/s12601-016-0011-2
  6. Chang, Y.S. and Scotti, A. (2004). Modeling unsteady turbulent flows over ripples: Raynolds-averaged navier- stokes equations (rans) versus large-eddy simulation (les). J. Geophys. Res., 109(C9).
  7. Chang, Y.S. and Scotti, A. (2006). Turbulent convection of suspended sediments due to flow reversal. J. Geophys. Res., 111(C07001).
  8. Hieu, P.D. and Tanimoto, K. (2006). Verification of a VOF-based two-phase flow model for wave breaking and wave-structure interactions. Ocean Engineering, 33, 1565-1588. https://doi.org/10.1016/j.oceaneng.2005.10.013
  9. Hirt, C.W. and Nichols, B.D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. J. Computational Physics, 39, 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  10. Jeong, W.M., Oh, S.-H. and Lee, D.Y. (2007). Abnormally high waves on the east coast. J. Korean Soc. Coastal and Ocean Engineers, 19(4), 295-302 (in Korean).
  11. Jeong, W.M., Ryu, K.-H., Oh, S.-H. and Baek, W.D. (2016). Trend of storm wave appearance on the east coast analyzed by using long-term wave observation data. J. Korean Soc. Coastal and Ocean Engineers, 28(2), 109-115 (in Korean). https://doi.org/10.9765/KSCOE.2016.28.2.109
  12. Launder, B.E. and Spalding, D.B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  13. Nam, I.-S., Yoon, H.-S., Kim, J.-W. and Ryu, C.-R. (2005). Numerical modeling of wave run-up and internal set-up on and in permeable coastal structure. Journal of Advanced Research in Ocean Engineering, 16(5), 34-40.
  14. Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport. Vol. 4. World Scientific, River Egde, NJ.
  15. PHRI, Coastal Development Institute of Technology (2001). Research and development of numerical wave channel (CADMAS-SURF), CDIT Library, Vol. 12.
  16. Rodi, W. (2017). Turbulence modeling and simulation in hydraulics: a historical review. J. Hydraulic Eng., 143(5), 1-20.
  17. Schmitt, F.G. (2007). About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus Mecanique, 335(9-10), 617-627. https://doi.org/10.1016/j.crme.2007.08.004
  18. Scotti, A. and Piomelli, U. (2001). Numerical simulation of pulsating turbulent channel. Phys. Fluids, 13(5), 1367-1384. https://doi.org/10.1063/1.1359766
  19. Wilcox, C.D. (1998). Turbulence Modeling for CFD. 2nd Ed., (DCW Industries, La Canada), ISBN 0963605100.
  20. Yoon, H.-S., Cha, J.-H. and Kang, Y.-K. (2005). An application of CADMAS-SURF to the wave run-up in permeable coastal structures. Journal of Advanced Research in Ocean Engineering, 19(4), 49-55.