• Title/Summary/Keyword: Reversible CA

Search Result 71, Processing Time 0.026 seconds

Crystal Structure of Thiolase from Clostridium butyricum (Clostridium butyricum 유래 Thiolase의 입체구조규명 연구)

  • Kim, Eun-Jung;Kim, Kyung-Jin
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.353-358
    • /
    • 2016
  • Thiolase is an enzyme that catalyzes condensation reactions between two acetyl-CoA molecules to produce acetoacetyl-CoA. As thiolase catalyzes is the first reaction in the production of n-butanol, knowledge of the molecular and regulatory mechanism of the enzyme is crucial for synthesizing high-value biofuel. Thiolase from Clostridium butyricum (CbTHL) was expressed, purified, and crystallized. X-ray diffraction data were collected from the crystals, and the 3-dimentional structure of the enzyme was determined at 2.0 Å. The overall structure of thiolase was similar to that of type II biosynthetic thiolases, such as thiolase from C. acetobutylicum (CaTHL). The superposition of this structure with that of CaTHL complexed with CoA revealed the residues that comprise the catalytic and substrate binding sites of CbTHL. The catalytic site of CbTHL contains three conserved residues, Cys88, His349, and Cys379, which may function as a covalent nucleophile, general base, and second nucleophile, respectively. For substrate binding, the way in which CbTHL stabilized the ADP moiety of CoA was unlike that of other thiolases, whereas the stabilization of β-mercaptoethyamine and pantothenic acid moieties of CoA was quite similar to that of other enzymes. The most interesting observation in the CbTHL structure was that the enzyme was regulated through redox-switch modulation, using a reversible disulfide bond.

Studies on Chemical Properties and Thermal Analysis of (Sr,M)FeO3-y System (M=Ca) ((Sr,M)FeO3-y계(M=Ca)의 화학적 성질과 열분석에 대한 연구)

  • Lee, Eun-Seok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.954-959
    • /
    • 1997
  • The solid solutions of the $Sr_{1-X}M_XFeO_{3-y}$ (x=0.1, 0.2, 0.3, 0.4, 0.5, M=Ca) system having perovskite structures were prepared in air by heat treatment at 1473 K for 18hr. X-ray diffraction assigns cubic system for all the samples and shows that the lattice volume of each system decreases with increasing x value until x=0.3, but increases abruptly from x=0.4. The mole fractions of $Fe^{4+}$ ion($\tau$ value), the amounts of oxygen vacancy (y value) and finally nonstoichiometric chemical formulas for each composition were determined from Mohr salt analysis. TG/DTA thermal analysis (temperature range: 300~1173K) exhibits that 3-y values of the samples having x=0.1 and 0.2, decrease with temperature and increase almost reversibly with decreasing temperature. The samples of $x{\geq}0.3$, however, didn't show the reversible weight change and the 3-y values of them were nearly 2.5 in cooling process. Conductivities of each sample were varied within the semiconductivity range at relatively low temperature. And the conductivity at constant temperature decreases steadily with x value. The conduction mechanism of this ferrite system may be proposed as a hopping model of conducting electrons between the mixed valence states. At high temperature semiconductivity of each sample changed into metallic property.

  • PDF

Regulation of $Ba^{2+}$-Induced Contraction of Murine Ureteral Smooth Muscle

  • Kim, Young-Chul;Lee, Moo-Yeol;Kim, Wun-Jae;Myung, Soon-Chul;Choi, Woong;Kim, Chan-Hyung;Xu, Wen-Xie;Kim, Seung-Ryul;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.207-213
    • /
    • 2007
  • This study was designed to characterize ureteral smooth muscle motility and also to study the effect of forskolin(FSK) and isoproterenol(ISO) on smooth muscle contractility in murine ureter. High $K^+$(50 mM) produced tonic contraction by $0.17{\pm}0.06mN$(n=19). Neuropeptide and neurotransmitters such as serotonin($5{\mu}M$), histamine($20{\mu}M$), and carbarchol(CCh, $10{\sim}50{\mu}M$) did not produce significant contraction. However, CCh($50{\mu}M$) produced slow phasic contraction in the presence of 25 mM $K^+$. Cyclopiazonic acid(CPA, $10{\mu}M$), SR $Ca^{2+}$-ATPase blocker, produced tonic contraction(0.07 mN). Meanwhile, inhibition of mitochondria by protonophore carbnylcyanide m-chlorophenylhydrazone(CCCP) also produced weak tonic contraction(0.01 mN). The possible involvement of $K^+$ channels was also pursued. Tetraethyl ammonium chloride(TEA, 10 mM), glibenclamide($10{\mu}M$) and quinidine($20{\mu}M$) which are known to block $Ca^{2+}$-activated $K^+$ channels($K_{Ca}$ channel), ATP-sensitive $K^+$ channels($K_{ATP}$) and nonselective $K^+$ channel, respectively, did not elicit any significant effect. However, $Ba^{2+}$($1{\sim}2mM$), blocker of inward rectifier $K^+$ channels($K_{IR}$ channel), produced phasic contraction in a reversible manner, which was blocked by $1{\mu}M$ nicardipine, a blocker of dehydropyridine-sensitive voltage-dependent L-type $Ca^{2+}$ channels($VDCC_L$) in smooth muscle membrane. This $Ba^{2+}$-induced phasic contraction was significantly enhanced by $10{\mu}M$ cyclopiazonic acid(CPA) in the frequency and amplitude. Finally, regulation of $Ba^{2+}$-induced contraction was studied by FSK and ISO which are known as adenylyl cyclase activator and $\beta$-adrenergic receptor agonist, respectively. These drugs significantly suppressed the frequency and amplitude of $Ba^{2+}$-induced contraction(p<0.05). These results suggest that $Ba^{2+}$ produces phasic contraction in murine ureteral smooth muscle which can be regulated by FSK and $\beta$-adrenergic stimulation.

Inactivation of human pleural fluid phospholipase $A_2$ by dioscin

  • Beak, Suk-Hwan;Kim, Sung-Hwan;Son, Kun-Ho;Chung, Kyu-Charn;Chang, Hyeun-Wook
    • Archives of Pharmacal Research
    • /
    • v.17 no.4
    • /
    • pp.218-222
    • /
    • 1994
  • The natural product, spirostanol glycoside dioscin, was shown to directly inactivate human pleural fluid phospholipase $A_2{\;}(PLA_2)$ Inactivation was dose, and time dependent. The $IC_{50}$ was estimated at 18 .mu.M and virtually complete inactivation of the enzyme occurred at 50 .mu.M. Using Michaelis-Menten kinetics, dioscin inactivated the enzyme by a competitive inhibitory manner, the apparent Ki value was $6.9{\times}10_{-4}$. Reversibility was studied directly by dialysis method, the inhibition was reversible. Additioin of excess $Ca^{2+}$ concentration up to 8 mM did not antagonize the inhibitory activity of dioscin. Inactivation of several kinds of $PLA_2$ by dioscin is due to interaction with the active site of $PLA_2$ and may be a useful adjunt in the theraphy of inflammatory diseases.

  • PDF

Biochemical and molecular characterization of a tetrachloroethylene (PCE) dechlorinating Clostridium bifermentans DPH-1

  • Chang, Young-Cheol;Toyama, Tadashi;Kikuchi, Shintaro
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.2
    • /
    • pp.1-18
    • /
    • 2008
  • The tetrachloroethylene (PCE) dehalogenase of Clostridium bifermentans DPH-1 (a halorespiring organism) was purified, cloned, and sequenced. This enzyme is a homodimer with a molecular mass of ca. 70 kDa and exhibits dehalogenation of dichloroethylene isomers along with PCE and trichloroethylene (TCE). Broad range of substrate specificity for chlorinated aliphatic compounds (PCE, TCE, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, 1,1-dichloroethylene, 1,2-dichloropropene, and 1,1,2-trichloroethane) for this enzyme was also observed. A mixture of propyl iodide and titanium citrate caused a light-reversible inhibition of enzymatic activity suggesting the involvement of a corrinoid cofactor. A partial sequence (81 bp) of the encoding gene for PCE dehalogenase was amplified and sequenced with degenerateprimers designed from the N-terminal sequence (27 amino acid residues). Southern analysis of C. bifermentans genomic DNA using the polymerase chain reaction product as a probe revealed restriction fragment bands. A 5.0 kb ClaI fragment, harboring the relevant gene (designated pceC) was cloned (pDEHAL5) and the complete nucleotide sequence of pceC was determined. The gene showed homology mainly with microbial membrane proteins and no homology with any known dehalogenase, suggesting a distinct PCE dehalogenase. So, C. bifermentans could play some important role in the initial breakdown of PCE and other chlorinated aliphatic compounds in sites contaminated with mixtures of halogenated substances.

Crystal Structure of β-Carbonic Anhydrase CafA from the Fungal Pathogen Aspergillus fumigatus

  • Kim, Subin;Yeon, Jungyoon;Sung, Jongmin;Jin, Mi Sun
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.831-840
    • /
    • 2020
  • The β-class of carbonic anhydrases (β-CAs) are zinc metalloenzymes widely distributed in the fungal kingdom that play essential roles in growth, survival, differentiation, and virulence by catalyzing the reversible interconversion of carbon dioxide (CO2) and bicarbonate (HCO3-). Herein, we report the biochemical and crystallographic characterization of the β-CA CafA from the fungal pathogen Aspergillus fumigatus, the main causative agent of invasive aspergillosis. CafA exhibited apparent in vitro CO2 hydration activity in neutral to weak alkaline conditions, but little activity at acidic pH. The high-resolution crystal structure of CafA revealed a tetramer comprising a dimer of dimers, in which the catalytic zinc ion is tetrahedrally coordinated by three conserved residues (C119, H175, C178) and an acetate anion presumably acquired from the crystallization solution, indicating a freely accessible "open" conformation. Furthermore, knowledge of the structure of CafA in complex with the potent inhibitor acetazolamide, together with its functional intolerance of nitrate (NO3-) ions, could be exploited to develop new antifungal agents for the treatment of invasive aspergillosis.

Synthesis and Characterization of Nb, Mo-doped and Nb/Mo-codoped Monoclinic VO2 Nanoparticles and Their Thin Films by Hydrothermal/Post-Thermal Transformation and Wet-Coating Method

  • Kim, Jongmin;Jung, Young Hee;Kwak, Jun Young;Kim, Yeong Il
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.2
    • /
    • pp.94-101
    • /
    • 2019
  • Nb, Mo-doped and Nb/Mo-codoped $VO_2(M)$ nanocrystallites with various doping levels were synthesized for the first time by a hydrothermal and post thermal transformation method. The reversible phase transition characteristics of those doped $VO_2(M)$ was comparatively investigated. Nb-doping of $VO_2(M)$ by this method resulted in a very efficient lowering of the transition temperature ($T_c$) with a rate of $-16.7^{\circ}C/at.%$ that is comparable to W-doping, while Mo-doping did not give a serious reduction of $T_c$ with only a rate of $-5.1^{\circ}C/at.%$. Nb/Mo-codoping gave a similar result to Nb-doping without a noticeable difference. The thin films of Nb-doped and Nb/Mo-codoped $VO_2(M)$ with a thickness of ca. 120 nm were prepared by a wet-coating of the nanoparticle-dispersed solutions. Those films showed a good thermochromic modulation of near infrared radiation with 30-35% for Nb-doped $VO_2(M)$ and 37-40% for Nb/Mo-codoped ones. Nb/Mo-codoped $VO_2(M)$ film showed slightly enhanced thermochromic performance compared with Nb-doped $VO_2(M)$ film.

Effects of Ginsenosides and Their Metabolites on Voltage-dependent Ca2+ Channel Subtypes

  • Lee, Jun-Ho;Jeong, Sang Min;Kim, Jong-Hoon;Lee, Byung-Hwan;Yoon, In-Soo;Lee, Joon-Hee;Choi, Sun-Hye;Lee, Sang-Mok;Park, Yong-Sun;Lee, Jung-Ha;Kim, Sung Soo;Kim, Hyoung-Chun;Lee, Boo-Yong;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.52-62
    • /
    • 2006
  • In previous reports we demonstrated that ginsenosides, active ingredients of Panax ginseng, affect some subsets of voltage-dependent $Ca^{2+}$ channels in neuronal cells expressed in Xenopus laevis oocytes. However, the major component(s) of ginseng that affect cloned $Ca^{2+}$ channel subtypes such as ${\alpha}_{1C}$(L)-, ${\alpha}_{1B}$(N)-, ${\alpha}_{1A}$(P/Q)-, ${\alpha}_{1E}$(R)- and ${\alpha}_{1G}$(T) have not been identified. Here, we used the two-microelectrode voltage clamp technique to characterize the effects of ginsenosides and ginsenoside metabolites on $Ba^{2+}$ currents ($I_{Ba}$) in Xenopus oocytes expressing five different $Ca^{2+}$ channel subtypes. Exposure to ginseng total saponins (GTS) induced voltage-dependent, dose-dependent and reversible inhibition of the five channel subtypes, with particularly strong inhibition of the ${\alpha}_{1G}$-type. Of the various ginsenosides, $Rb_1$, Rc, Re, Rf, $Rg_1$, $Rg_3$, and $Rh_2$, ginsenoside $Rg_3$ also inhibited all five channel subtypes and ginsenoside $Rh_2$ had most effect on the ${\alpha}_{1C}$- and ${\alpha}_{1E}$-type $Ca^{2+}$ channels. Compound K (CK), a protopanaxadiol ginsenoside metabolite, strongly inhibited only the ${\alpha}_{1G}$-type of $Ca^{2+}$ channel, whereas M4, a protopanaxatriol ginsenoside metabolite, had almost no effect on any of the channels. $Rg_3$, $Rh_2$, and CK shifted the steady-state activation curves but not the inactivation curves in the depolarizing direction in the ${\alpha}_{1B}$- and ${\alpha}_{1A}$-types. These results reveal that $Rg_3$, $Rh_2$ and CK are the major inhibitors of $Ca^{2+}$ channels in Panax ginseng, and that they show some $Ca^{2+}$ channel selectivity.

The effect of extracellular Mg2+ on action potential in guinea pig papillary muscles (기니픽 심장 유두근에서 magnesium이 활동전위에 미치는 영향)

  • Chang, Sung-Eun;Kim, Shang-Jin;Kang, Hyung-Sub;Kim, Jin-Shang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.1
    • /
    • pp.31-39
    • /
    • 2003
  • We have investigated the effect of extracellular $Mg^{2+}$ ($[Mg^2+]_o$) on action potential duration (APD) in guinea pig papillary muscles by using microelectrodes. Increasing $[Mg^2+]_o$ resulted in progressive negative inotropic effect, progressive ascending depolarization of membrane potential, and increase in intracellular $Mg^{2+}$ concentration. In addition, increase in $[Mg^2+]_o$ from 1.1 to 3, 6, 10, and 20 mM produced a reversible dose-dependent shortening of both APD at 30% ($APD_{30}$) and 90% repolarization ($APD_{90}$), especially showing a tendency towards more remarkable prominent shortening in $APD_{30}$ than $APD_{90}$. Cooling from 37 to 33 and $27^{\circ}C$ diminished the $[Mg^2+]_o$-induced APD shortening. Increase in extracellular $Ca^{2+}$ concentration from 1.8 to 3.6 and 5.4 mM caused a significant depressed effect on the increasing $[Mg^2+]_o$-induced APD shortening. Furthermore, increase in $[Mg^2+]_o$ from 1.1 to 10 and 20 mM produced a significant depressed effect on the APD shortening induced by extracellular $Ca^{2+}$. Pretreatment of verapamil and imipramine significantly attenuated the increasing $[Mg^2+]_o$-induced APD shortening in both $APD_{30}$ and $APD_{90}$, whereas the $[Mg^2+]_o$-induced APD shortening was not affected by strophanthidin, glibenclamide and tetrabutylammonium. These findings suggest that the effects of $[Mg^2+]_o$ on APD are probably due to a decrease in ionic transport across plasma membrane. In conclusion, the present study indicates that $[Mg^2+]_o$ exerts antiarrhythmic activities by antagonistic actions on intracellular $Ca^{2+}$.

Differentiation of Sorptive Bindings of Some Radionuclides with Sequential Chemical Extractions in Sandstones (순차적화학추출법을 사용한 방사성핵종의 사암에 대한 수착유형 평가)

  • Park, Chung-Kyun;Hahn, Pil-Soo;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.461-470
    • /
    • 1994
  • Sorption experiments of $^{60}$ Co, $^{85}$ Sr. and $^{137}$ Cs onto sandstone particles in a batch were carried out to investigate the migration mobility. Sorption kinetics and reversibility as well as sorption mechanisms were examined. Sorption reaction occurred mostly within 10 hours on the outer surface of the sandstone particle but diffusion into the inner surface of the mineral has still occurred after that time. In order to distinguish sorption types of radionuclides, a sequential chemical extraction was introduced. The sorbed radionuclides were then extracted by applying different solutions of synthetic groundwater, CaCl$_2$, KCl and KOX-HA Especially KCl is adopted to extract the ion-exchanged cesium. Sorption types considered are reversible sorption under groundwater condition, ion exchange, association with ferro-manganese oxides or oxyhydroxides, and irreversible fixation. Strontium sorbs onto the sandstone surface mainly by fast and reversible ion exchange reaction. However, cobalt and cesium do not sorb by simple process. The main sorptive binding of cobalt was the association with ferro-manganese oxides and the secondary one was irreversible fixation. Diffusion into the lattice of minerals controlled the sorption rate of cobalt The main sorptin type of cesium was irreversible fixation, while ion exchange reaction was the secondary importance. Hence the oreder of migration mobility for the three radionuclides was Sr$^{2+}$ > Co$^{2+}$ > Cs$^{+}$ in the sandstones.

  • PDF