• Title/Summary/Keyword: Reverse inequality

Search Result 35, Processing Time 0.022 seconds

NEW EXTENSION FOR REVERSE OF THE OPERATOR CHOI-DAVIS-JENSEN INEQUALITY

  • Baharak Moosavi;Mohsen Shah Hosseini
    • Honam Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.123-129
    • /
    • 2023
  • In this paper, we introduce the reverse of the operator Davis-Choi-Jensen's inequality. Our results are employed to establish a new bound for the Furuta inequality. More precisely, we prove that, if $A,\;B{\in}{\mathcal{B}}({\mathcal{H}})$ are self-adjoint operators with the spectra contained in the interval [m, M] with m < M and A ≤ B, then for any $r{\geq}{\frac{1}{t}}>1,\,t{\in}(0,\,1)$ $A^r{\leq}({\frac{M1_{\mathcal{H}}-A}{M-m}}m^{rt}+{\frac{A-m1_{\mathcal{H}}}{M-m}}M^{rt}){^{\frac{1}{t}}}{\leq}K(m,\;M,\;r)B^r,$ where K (m, M, r) is the generalized Kantorovich constant.

On a Relation to Hilbert's Integral Inequality and a Hilbert-Type Inequality

  • Yang, Bicheng
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.563-572
    • /
    • 2009
  • In this paper, by introducing some parameters and using the way of weight function, a new integral inequality with a best constant factor is given, which is a relation between Hilbert's integral inequality and a Hilbert-type inequality. As applications, the equivalent form, the reverse forms and some particular inequalities are considered.

ON BONNESEN-STYLE ALEKSANDROV-FENCHEL INEQUALITIES IN ℝn

  • Zeng, Chunna
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.799-816
    • /
    • 2017
  • In this paper, we investigate the Bonnesen-style Aleksandrov-Fenchel inequalities in ${\mathbb{R}}^n$, which are the generalization of known Bonnesen-style inequalities. We first define the i-th symmetric mixed homothetic deficit ${\Delta}_i(K,L)$ and its special case, the i-th Aleksandrov-Fenchel isoperimetric deficit ${\Delta}_i(K)$. Secondly, we obtain some lower bounds of (n - 1)-th Aleksandrov Fenchel isoperimetric deficit ${\Delta}_{n-1}(K)$. Theorem 4 strengthens Groemer's result. As direct consequences, the stronger isoperimetric inequalities are established when n = 2 and n = 3. Finally, the reverse Bonnesen-style Aleksandrov-Fenchel inequalities are obtained. As a consequence, the new reverse Bonnesen-style inequality is obtained.

Weighted Geometric Means of Positive Operators

  • Izumino, Saichi;Nakamura, Noboru
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.2
    • /
    • pp.213-228
    • /
    • 2010
  • A weighted version of the geometric mean of k ($\geq\;3$) positive invertible operators is given. For operators $A_1,{\ldots},A_k$ and for nonnegative numbers ${\alpha}_1,\ldots,{\alpha}_k$ such that $\sum_\limits_{i=1}^k\;\alpha_i=1$, we define weighted geometric means of two types, the first type by a direct construction through symmetrization procedure, and the second type by an indirect construction through the non-weighted (or uniformly weighted) geometric mean. Both of them reduce to $A_1^{\alpha_1}{\cdots}A_k^{{\alpha}_k}$ if $A_1,{\ldots},A_k$ commute with each other. The first type does not have the property of permutation invariance, but satisfies a weaker one with respect to permutation invariance. The second type has the property of permutation invariance. We also show a reverse inequality for the arithmetic-geometric mean inequality of the weighted version.

Sagae-Tanabe Weighted Means and Reverse Inequalities

  • Ahn, Eunkyung;Kim, Sejung;Lee, Hosoo;Lim, Yongdo
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.595-600
    • /
    • 2007
  • In this paper we consider weighted arithmetic and geometric means of several positive definite operators proposed by Sagae and Tanabe and we establish a reverse inequality of the arithmetic and geometric means via Specht ratio and the Thompson metric on the convex cone of positive definite operators.

  • PDF