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DISCRETE RESULTS OF QI-TYPE INEQUALITY

YU Mi1AO AND JUAN-FANG Liu

ABSTRACT. In the present paper, we give several discrete results for the
open problem posed in the article [Feng Qi, Several integral inequalities,
J. Inequal. Pure and Appl. Math. 1 (2000), no. 2, Art. 19].

1. Introduction

The following problem was posed by Qi in his article [10]: “Under what
condition does the inequality

(11) / b [f(@)] dz > ( / bf(w)dx)

hold fort > 12",

There are numerous answers and extension results to this open problem
1, 2, 3,4, 5,6, 8 9, 11, 13, 14]. These results were obtained by different
approaches, such as, e.g. Jensen’s inequality, the convexity method [14]; func-
tional inequalities in abstract spaces [1, 2]; probability measures view [4, 6];
Hélder inequality and its reversed variants [2, 9]; analytical methods [8, 13];
Cauchy’s mean value theorem {3, 11].

In this paper we introduce the discrete version of (1.1) as follows, “Under
what condition does the inequality

n n s
(12) ZI?G;Z' > (Z ziai>
i=1 i=1

hold for a,8 > 0%”. (For the infinite series, the same method in the above
finite series can be discussed.)

Here and in what follows we write X for the discrete random variable (r.v.)
with values #1, 22, ..., 2Z,. Accordingly, let us denote E(X) the mathematical
expectation of r.v. X, e, E(X) = Y, z;P(X = z;), where P(X = ;)
denotes the probability of the event {X = z;}.
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We will consider some moment type inequalities for the discrete random vari-
able X with values z1,zo,...,z,. Precisely, in §2 we obtain results concerning
the direct inequality (1.2) by taking the probability distribution function. In
§3, we derive some inequalities reversed to (1.2). Finally, in §4 several fur-
ther results will be treated by constructing suitable probability measures for
arriving at answers to (1.2).

2. Direct inequality

In this section we consider two important cases of (1.2). At first let o >
max{1, 3}, then we take o > 0,8 > 1.

2.1. The case a > max{1, 3}.

Theorem 1. Let {z;,i = 1,2,...,n},{a;,i = 1,2,...,n} be two sequences of
nonnegative real numbers such that

n B~a n l-a
=1 i=1

Then the inequality (1.2) holds.

- Proof. Let X denote the discrete random variable with

P(X = 122) =

a;
and E(X ar:Z
E?:l ai ) Z ]_ a;

Then it is obvious that

(2.2) inai = (Zai) E(X) and fo‘ai = (Z ai) E(X®).

Thus it is sufficient to show

n n B
(2.3) (Z ai) E(X%) > l(}: ai) E(X)] .

Indeed, by Jensen’s inequality and (2.1), we conclude

n B s \B
KZG) E(X)l =(Za> [ECOI*EX))~

(Za> [E(X)[EX))P~ “<(Zaz) (X),

which implies our result. O

IA

With the similar proof, we have the following
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Theorem 2. Let {z;,i =1,2,...,n},{a;,7 = 1,2,...,n} be two sequences of
real numbers such that 8 > 0, a =2k/j > 1,j,k € N, and

n B—-o n -«
(24) (Z SCZ'G,Z') < (Z ai) .

Then the inequality (1.2) holds.
2.2. The case a > 0,3 > 1.

In this case we will need the help of an auxiliary result, which we clearly
deduce by Hélder’s inequality.

Lemma 1. Let Z, Y be two random variables with Z > 0,Y >0, Z/Y >0
a.e. In addition, let the constants K,r > 0,p> 1 and E(Z/Y )" < K. Then

(2.5) Ez" < [E(z/Y)7]"" x [Ey™]"? < K'/P[EY ™)
where 1/p+1/¢=1.

Theorem 3. Let {z;,i=1,2,...,n},{a;,i=1,2,...,n} be two sequences of
nonnegative real numbers such that

T
(2.6) Za,;xgﬂ_a')/(’@_l) <1.
fm=1

Specifically, for a > 8, lettingx; >m >0,4=1,2,...,n and

1 22
— Ay 24 S L
i=1
Then the inequality (1.2) holds true.

Proof. From the proof of Theorem 1, it is enough to prove that

T 123 p
21) (S0 0= | (S ot
1=1 i=1

Let q=8>1,p=8/(B~-1), Z" = X and Y™ = X% in the formula of
Lemma 1. Then (Z/Y)" = X'~%/0 readily follows, and consequently

n B 7 i/p g
[(Z ai> E(X)} < {(z ai> (E(XP—P&/H)> / (E(Xce))l/ﬁ
- »,i:l B8-1 n
S E————
j_ - 1:11 n
- <Zai> (Bx o)/5-1))* (Zai> E(X")
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n -1 n
— (Z aixl(ﬁ—a)/(ﬂ"‘l)) (Z a"i) E(Xa),
i=1

=1

which, by (2.6), yields the desired result. O

Remark 1. In fact, we do not need the condition o > 8, since supposing the
converse o < @ and (8—a)/(8—1) < 1, then the condition (2.6) can be replaced
by the following condition, from using 27, 0 < v < 1, is concave function,

n n =
Zam < (Z ai> )
i=1 =1
which is easier to check.

3. Reverse inequality

In this section, we mainly discuss reverse inequality of the inequality (1.2).
For this purpose we list the following auxiliary inequality by Saitoh et al. [12],
which is a reverse Holder’s inequality.

Lemma 2. For two positive functions f and g satisfying 0 < m < fP/g? <
M < oo on the set X, and forp>1 and g >1 with 1/p+1/qg=1, we have

(3.1) ( /X f’“du>1/p ( /X quu)l/q < (%)p—t /X fgdp.

Theorem 4. Let {z;,i =1,2,...,n},{a;,i = 1,2,...,n} be two sequences of
positive real numbers and assume that o > 1, 8 > 0 and

n - n a—pf
(3.2) (%Za) (Z“) <1,

where M = max{x1,z2,...,2,} and m = min{z1,2s,...,2,}. Then we have
the following reverse inequality to (1.2), i.e.,

n n B8
fo‘ai < (Z wiai) .
i=1 i=1

Proof. The inequality (3.1) can be written in an equivalent form as

~

3) B PPE(g0)] V7 < (%) " B9,

where E,, denotes the mathematical expectation under a probability measure
p. Furthermore, as the proof of Theorem 1, it is sufficient to show

n n B
(3.4) (Z ai) E(X%) < [(Z a,~> E(X)} :
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Taking f = X, 9g=1,p=0q, ¢ = of(a—1), M = M®, v = m®, then (3.3)
becomes

(35) (B (X < (M)%EH(X)-

m
Thus by (3.4) and (3.5), we deduce

(En:ai) E(X*) < (Zn:az) { C% E(X)]
- Z_Z 8 7 1-8 o1
K ) } (z ) (%) [ECO)

{5)es]

The proof of the theorem is completed. (]

The following reverse Holder’s inequality was obtained by Nehari [7].

Lemma 3. Let (X, X, 1) be a finite positive measure space and let f; € LP(X,
¥, u) and f2 € LYX, %, ), where p,q >0, 1/p+ 1/q = 1. If, in addition, f
and fy satisfy 0 < my < fo € M, < o0, v = 1,2, and if the numbers ny, g,
(0 <m,me < 1) are defined by

/X Fodp = [me + (M, — mo)|u(X), v=12,

then
i/p /g
(36) [ | [ ] <0 [ s
X X X

where

_ [mf + (M7 — m¥)m] /P [m§ + (Mg — m§)mp]"/

 mame + mi (Mg — ma)me + ma (M1 — mi)m +y(My —my)(Mz — mg)
and

v = max{0,m +m — 1}.

Theorem 5. Let {x;,i = 1,2,...,n},{a;,;i = 1,2,...,n} be two sequences of
nonnegative real numbers and assume that o > 1, § > 0 and

n a—f
(37) D~ (Z méai> < 1,
i=1

where

[ma - (A,!cx — ma)E?=M] ‘E‘iz-m]l/a

B Y1 i ,
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M = max{zi1,z2,...,2,} and m = min{z,z2,...,2n}. Then we have the
following reverse inequality to (1.2), i.e.,

n n B
Z zia; < (Z xiai> .
i=1 i=1

Proof. As the proof of Theorem 1, it is sufficient to show

69 (Z ) Bx%) < [(Z ) E(X]

Taking f=X,9g=1,p=a,¢=a/(a—1), Mi=Mmi=m, My=mp=1
in Lemma 3, then D in (3.6) becomes

[me + (M® — me) Egatmm]i/e

Z?:l a;T;

(3.9)

The proof of the theorem is completed. O

Remark 2. In Theorem 5, if taking m = 0, then we have the following simple

form of D,
1—1
Dim1 BT

4. Solving (1.2) constructing suitable probability measures

In this section we construct convenient probability measures to derive some
new discrete Qi-type inequalities. In what follows, we define M = max{z,
Z2,..., Tn}t and m = min{z1,zs,...,Zn}.

Theorem 6. Let {z;,i =1,2,...,n},{a;,i = 1,2,...,n} be two sequences of
nonnegative real numbers and assume that « > 3 > 1 and

ma—l

>1
VN A

(4.1)
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Then we have

n n )
2% > 2L
S ot > (S mar)
i=1 =1
Moreover, the reverse inequality is valid when
erml

(4.2) A ai]ﬁ'l <1

Proof. Define

Ty Q4
D ie Tili
It is easy to see that xz;a;/ Y ., z;a;,V i = 1,2,...,n defines a probability
measure on 1, T2,...,%, and the following implications follow

(4.3) Limi Tia iy %7 ﬁ%a—z S me1

PX =ux;) = , Vi=1,2,...,n

B8 ; £-1 — . B—1"
Blin iad] o zal MPLYTE i
which implies our result. The remainder part of proof is straightforward. [

Remark 3. The direct use of the definitions of m and M results in
Z?:] T > m*
n 8 = n B-1
e Tia) MP 37, ail
For our purposes we need the case 9; > 1. However, it is easy to check that

= ml'

mafl

1 S 317
MB=1[T" ;]

gl

hence, (4.1) generalizes the simplest possible 9; > 1. By similar reasons,
Ma
n 81 <1

mP [0 ail

implies (4.2), so, the settings of Theorem 6 are optimal.

Corollary 1. Let {z;,;i =1,2,...,n},{a;,i = 1,2,...,n} be two sequences of
nonnegative real numbers and assume that 0 < f < a <1 and
Ma--l
(4.4) 71 2 1.
mAm L ai

Then we have 5

7 n !
Z xia; > E Tia; .
i=1 i=1

Moreover, the reverse inequality is valid when
a1
(4.5) L <1
MO a)”

i=1 %
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Corollary 2. Let {z;,i =1,2,...,n},{a;,i=1,2,...,n} be two sequences of
nonnegative real numbers and assume that 0 < § <1 < o and

me—8

4.6 _— >
(49 r, el

1.

Then it follows that

n n 8
fo‘ai > <inai> .
i=1 i=1
Otherwise, when 0 < < a <1, and
Mo—8

4.7 = <
@ r, el

b

the reverse inequality

n n B
Z w?ai S <Z wiai)
i=1 i=1

15 deduced.

Finally, let us construct an another probability measure

8
T, G4

Z?:l x’iﬁai
Taking into account the previous procedure for getting above inequalities and
their reversed variants, we arrive at the following results.

(4.8) P(X =z;)= , Vi=1,2,...,n, B#L

Theorem 7. Let {z;,i=1,2,...,n},{a;,i =1,2,...,n} be two sequences of
nonnegative real numbers and assume that 1 < 8 < a and

me—8

4.9 —_—
) [Crial”

1.

Then it follows that

n n s
me‘ai Z (Zz,az> .
i=1 i=1
Otherwise, when 0 < 8 <1, a > (3 and
Mo—F

4.10 —_—<
0 Eiied”™

the reverse inequality

n n B
Z za; < (Z xiai>
i=1 i=1

holds.
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Proof. Let us consider the probability measure defined in (4.8), 8 > 1:

PR D D
Do wiad® [, el [E(X))°
> D1 %4
T i alPB(XP)
_ S 22 Pl me?

> —— >1.
0 als-1 Y0 ofe, T Mm@l
This is the first desired result of Theorem 7.

Next we shall give the proof of the second case. As the same proof as the
above discussion, by the assumptions 0 < 8 < 1 and (4.10}, we have

Z:ll:l I?a’i — Z?:l l‘?ai
D mal® [, alP[E(X))P
< Z?:l ria;
T [ alSE(XF)
S 2 Pl M8
= poy =t nz 73 < —=w B-1 <L
Do alP 2w sy ail g

Repeating the proving procedure of the previous theorem, we get the follow-
ing interesting result.

Theorem 8. Let {z;,i =1,2,...,n},{a;,i = 1,2,...,n} be two sequences of
nonnegative real numbers and assume that 8 > max{a,1}, a >0 and

Meo—8

(4.11) 5T 21
iy il

Then it follows that
3

k13 n 4
Z xda; > (Z miai)
i=1 i=1
In addition, for 0 < a < G < 1, and

o7
(4.12) m <1

e’

the reverse inequality
n n 8
Z xf‘ai S (Z :ciai)
i=1 i=1

holds.

Because of the similarity of the proofs of last two theorems the proof of the
last one is omitted.
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