• Title/Summary/Keyword: Return signal

Search Result 206, Processing Time 0.039 seconds

A Study on the Effect of Cab Signal through Unbalance of the Traction Return Current (귀선전류의 불평형에 따른 차상신호에 미치는 영향에 관한 연구)

  • Lee, Tae-Hoon;Park, Ki-Bum;Sung, Soon-Uk
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1694-1700
    • /
    • 2007
  • In the electrified section, both of return current and signal current are flowing in the same rail in common. But signal current shall be allowed to flow in the specific track circuit and not in the other circuit while the traction return current shall come back to power sub-station. This paper presents measuring system that use both sensor and antenna. The aim of the system is to achieve the difference in current between the two rails and the presence of trimming capacitors. In order to improve the transmission level, trimming capacitors are connected between the two rails at constant spacing. To maintain the balance of traction return current, rails of both sides may be jointed by the so-called SVPMM. The traction return current is sometimes unbalanced owing to the ill-contact of SVPMM. In this paper, we propose a diagnosis method based on a short-circuited current(Icc), trimming capacitors and traction return current measured by Korail inspection vehicles. Whether Icc is good or bad depends not only on the presence of trimming capacitors but also on the unbalance of the traction return current.

  • PDF

Analysis of Return Current Effect for AF Non-insulated Track Circuit in ITX Vehicle Operation (ITX 차량 운행에 의한 AF 무절연 궤도회로의 귀선전류 영향 분석)

  • Beak, Jong-Hyen;Kim, Yong-Kyu;Yoon, Yong-Ki;Jang, Dong-Wook;Shin, Dong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.584-590
    • /
    • 2013
  • Depending on the operating characteristics, track circuit is installed for the purpose of control directly or indirectly of the signal device, point switch machine and other security device. These are mainly used for train detection, transmission of information, broken train detection and transmission of return current. Especially, the return current is related to signal system, power system and catenary line, and track circuit systems. It is one of the most important component shall be dealt for the safety of track side staff and for the protection of railway-related electrical system according to electrification. Therefore, an accurate analysis of the return current is needed to prevent the return current unbalance and the system induced disorder and failure due to an over current condition. Also, if the malfunction occurred by the return current harmonics, it can cause problems including train operation interruption. In this paper, we presented measurement and analysis method at return current and it's harmonics by train operation. By the test criteria, we evaluated for safety. Hereafter, it is expected to contribute to the field associated with it.

Effects of Upstream Bit Rate on a Wavelength-Remodulated WDM-PON Based on Manchester or Inverse-Return-to-Zero Coding

  • Chung, Hwan-Seok;Kim, Bong-Kyu;Kim, Kwang-Joon
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.255-260
    • /
    • 2008
  • We compare the performance of a wavelength remodulated wavelength-division-multiplexed passive optical network implemented using Manchester-coded or inverse-return-to-zero (IRZ)-coded signal downstream and non-return-to-zero remodulated signal upstream. We investigate the effects of varying differences between downstream and upstream bit rates on the two coding schemes. When the bit rate ratio of upstream to downstream is less than or equal to 50%, the performance of Manchester coding is better than that of IRZ coding. However, when the bit rate ratio of upstream to downstream is higher than 50%, Manchester code requires appropriate time delay between upstream and downstream signals, whereas IRZ code needs reduced extinction ratio in the downstream signal.

  • PDF

Dispersion tolerant transmission of the return-to-zero signal with alternate-phase generated from a rational harmonic mode-locked ring laser (유리수차 조화 모드잠김 광섬유 링레이저로부터 발생된 교차 위상 RZ(return-to-zero) 신호의 분산 제어 전송)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu;Kim, Baek-Hyun;Baek, Jong-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.203-204
    • /
    • 2006
  • We present and demonstrate a novel method of alternate-phase return-to-zero (RZ) signal generation and pulse-amplitude equalization simultaneously in a rational harmonic mode-locked fiber ring laser, using a dual-drive Mach-Zehnder (MZ) modulator. By adjusting the voltages applied to both arms of the modulator, the rational harmonic mode-locked pulse trains are equalized in their amplitudes. In addition to that, the amplitude-equalized pulse trains multiplying the repetition rate at ${\sim}10\;GHz$ have alternate $\pi$ phase difference between adjacent pulses. The alternate-phase RZ signal generated by the proposed method enhances transmission performance through the single-mode fiber (SMF) links without dispersion compensation.

  • PDF

Bandwidth Effect on the Dispersion Monitoring of CSRZ Signal Based on Clock Component (CSRZ 신호의 클럭 성분을 이용한 색분산 감시법에서 송수신단 대역폭의 영향 분석)

  • Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1343-1349
    • /
    • 2013
  • In optical fiber communications, several newly-developed signal formats are used to obtain the best performance within limited spectral bandwidth. CSRZ (carrier-suppressed return-to-zero) format is one of the new signal formats, which has better spectral efficiency and better robustness to dispersion than RZ (return-to-zero) format. Thus it is widely used for demonstrating high-speed optical communication systems. In an earlier research, we proposed a clock-extraction method of CSRZ signal to monitor chromatic dispersion. However, the clock-frequency component extracted by the clock-extraction method can be affected by the bandwidth of a transmitter or a receiver. Therefore, in this paper, we investigate the effect of bandwidth on the chromatic dispersion monitoring of CSRZ signal based on clock-frequency component. As a result, we propose a couple of robust clock-extraction methods to monitor chromatic dispersion in CSRZ signal.

Recent Trends on High-Speed Duobinary Transceiver Architecture (고속 듀오바이너리 송수신단 설계기술 동향)

  • Nam, Han-min;Kong, Bai-Sun
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1038-1045
    • /
    • 2019
  • This paper describes high-speed duobinary transceiver design techniques which are widely used to increase data-rate despite limited channel bandwidth. At high data-rate, signal level is severely degraded as signal frequency becomes larger than the channel bandwidth. Mathematically, a duobinary signal has lower frequency components compared to a Non-Return-to-Zero signal for the same data-rate. Therefore, by using the duobinary signaling, the signal loss can be effectively reduced in physical channel environment as compared to the Non-Return-to-Zero signaling. The mathematical basis of duobinary signaling, and its applications to high-speed transceiver design are investigated in this paper.

All-Optical Bit-Rate Flexible NRZ-to-RZ Conversion Using an SOA-Loop Mirror and a CW Holding Beam

  • Lee, Hyuek Jae
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.464-469
    • /
    • 2016
  • All-optical non-return-to-zero (NRZ) -to- return-to-zero (RZ) data-format conversion has been successfully demonstrated using a semiconductor optical amplifier in a fiber-loop mirror (so-called SOA-loop mirror) with a continuous-wave (CW) holding beam. The converted RZ signal after pulse compression has been used to create a 40 Gb/s OTDM (Optical Time Division Multiplexing) signal. Here is proposed an NRZ-to-RZ conversion method without any additional optical clocks, unlike conventional methods based on optical AND logic. In addition, it has the merit of operating at various bit-rate speeds without any controlling device. Moreover, it has a simple structure, and it can be used for all-optical bit-rate-flexible clock recovery.

Signal Synthesis Model for Active Sonar Performance Analysis (능동소나 성능분석을 위한 신호 합성 모델)

  • 이균경
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.683-686
    • /
    • 1999
  • In this paper, we develop an active sonar signal synthesis model to analyze the detection performance of active sonar systems in a shallow water environment. Using this model, we synthesize the return signal of a bistatic sonar system at a typical operating frequency. This signal can be used to test proper active sonar signal processing techniques for real applications.

  • PDF

An Effective Mitigation Method on the Signal-Integrity Effects by Splitting of a Return Current Plane (귀환 전류 평면의 분할에 기인하는 신호 무결성의 효과적인 대책 방법)

  • Jung, Ki-Bum;Jun, Chang-Han;Chung, Yeon-Choon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.366-375
    • /
    • 2008
  • Generally a return current plane(RCP) of high speed digital and analog part is partitioned. This is achieved in order to decrease the noise interference between subsystem in PCBs(Printed Circuit Boards). However, when the connected signal line exists between each sub system, this partition will cause unwanted effects. In a circuital point of view, RCP partition has a bad influence upon signal integrity. In a EMI(Electromagnetic Interference) point of view, the partition of the return current plane becomes a primary factor to increase the radiated emission. Component bridge(CB) is usecl for the way of maintaining signal integrity, still specific user's guide doesn't give sufficient principle. In a view point of signal integrity, design principle of multi-CB using method will be analyzed by measurement and simulation. And design principle of noise mitigation will be provided. Generally interval of CB is ${\lambda}/20$ ferrite bead. In this study. When multi-CB connection is applied, design principle of ferrite bead and chip resistor is proved by measurement and simulation. Multi-connected chip resistance$(0{\Omega})$ is proved to be more effective design method in the point of signal integrity.