• Title/Summary/Keyword: Return Dynamics

Search Result 71, Processing Time 0.027 seconds

Analysis on the Efficiency Change in Electric Vehicle Charging Stations Using Multi-Period Data Envelopment Analysis (다기간 자료포락분석을 이용한 전기차 충전소 효율성 변화 분석)

  • Son, Dong-Hoon;Gang, Yeong-Su;Kim, Hwa-Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • It is highly challenging to measure the efficiency of electric vehicle charging stations (EVCSs) because factors affecting operational characteristics of EVCSs are time-varying in practice. For the efficiency measurement, environmental factors around the EVCSs can be considered because such factors affect charging behaviors of electric vehicle drivers, resulting in variations of accessibility and attractiveness for the EVCSs. Considering dynamics of the factors, this paper examines the technical efficiency of 622 electric vehicle charging stations in Seoul using data envelopment analysis (DEA). The DEA is formulated as a multi-period output-oriented constant return to scale model. Five inputs including floating population, number of nearby EVCSs, average distance of nearby EVCSs, traffic volume and traffic congestion are considered and the charging frequency of EVCSs is used as the output. The result of efficiency measurement shows that not many EVCSs has most of charging demand at certain periods of time, while the others are facing with anemic charging demand. Tobit regression analyses show that the traffic congestion negatively affects the efficiency of EVCSs, while the traffic volume and the number of nearby EVCSs are positive factors improving the efficiency around EVCSs. We draw some notable characteristics of efficient EVCSs by comparing means of the inputs related to the groups classified by K-means clustering algorithm. This analysis presents that efficient EVCSs can be generally characterized with the high number of nearby EVCSs and low level of the traffic congestion.

Daesoon Jinrihoe as a Nativist Millennialism: A Comparative Study of East Asian New Religious Movements (本土性千禧年運動的建構與轉化: 以韓國大巡真理會為焦點的東亞比較研究)

  • Ting, Jenchieh
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.34
    • /
    • pp.171-202
    • /
    • 2020
  • The nations of East Asia have similar historical backgrounds in terms of going through modernization during the nineteenth century. All of them commonly experienced socio-political hardships. Three of the most prosperous East Asian new religions, Yiguandao, Tenrikyo, and Daesoon Jinrihoe, all emerged under similar socio-political circumstances during the nineteenth century. There was no mutual interchange, but the cosmological perspectives share some analogous ideology. All of them were types of nativist millennialism. The ultimate goal in all three is redeeming lost elements by magical means-the sudden disappearance of invading forces, the return of mystical heroes or messiahs, and an altered landscape. As Stark said, although it is impossible to calculate the actual rate of success, probably no more than one religious movement out of 1,000 will attract more than 100,000 followers and last for as long as a century. By this standard, these three groups are certainly worthy of being studied. This paper will examine and compare these three groups through four dimensions: the Messiah's eschatology, the re-interpretation of that eschatology after the Messiah's death, the rational transformations of millennial dreams, and the institutionalization of those millennial dreams. Analytically, I could demonstrate the differences among these groups through two dimensions: (1) The dimension of time, which can be conceptualized in terms of this-worldly or other-worldly; and (2) Collective vision, which can be conceptualized in terms of utopia or reform. The cross-classification of these two dimensions is suggestive of the general avenues of Millennialism. Through these comparisons and observations, light will be shed on the essence and dynamics of East Asian Millennialist Thought by exploring deeper cultural implications.

A Study on the Analysis of Optimal Asset Allocation and Welfare Improvemant Factors through ESG Investment (ESG투자를 통한 최적자산배분과 후생개선 요인분석에 관한 연구)

  • Hyun, Sangkyun;Lee, Jeongseok;Rhee, Joon-Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.171-184
    • /
    • 2023
  • Purpose: First, this paper suggests an alternative approach to find optimal portfolio (stocks, bonds and ESG stocks) under the maximizing utility of investors. Second, we include ESG stocks in our optimal portfolio, and compare improvement of welfares in the case with and without ESG stocks in portfolio. Methods: Our main method of analysis follows Brennan et al(2002), designed under the continuous time framework. We assume that the dynamics of stock price follow the Geometric Brownian Motion (GBM) while the short rate have the Vasicek model. For the utility function of investors, we use the Power Utility Function, which commonly used in financial studies. The optimal portfolio and welfares are derived in the partial equilibrium. The parameters are estimated by using Kalman filter and ordinary least square method. Results: During the overall analysis period, the portfolio including ESG, did not show clear welfare improvement. In 2017, it has slightly exceeded this benchmark 1, showing the possibility of improvement, but the ESG stocks we selected have not strongly shown statistically significant welfare improvement results. This paper showed that the factors affecting optimal asset allocation and welfare improvement were different each other. We also found that the proportion of optimal asset allocation was affected by factors such as asset return, volatility, and inverse correlation between stocks and bonds, similar to traditional financial theory. Conclusion: The portfolio with ESG investment did not show significant results in welfare improvement is due to that 1) the KRX ESG Leaders 150 selected in our study is an index based on ESG integrated scores, which are designed to affect stability rather than profitability. And 2) Korea has a short history of ESG investment. During the limited analysis period, the performance of stock-related assets was inferior to bond assets at the time of the interest rate drop.

Extraction of Nonlinear Dynamical Component by Wavelet Transform in Hydro-meteorological Data (수문기상자료의 웨이블렛 변환에 의한 비선형 동역학적 성분의 추출)

  • Jin, Young-Hoon;Park, Sung-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.439-446
    • /
    • 2006
  • In the present study, we applied wavelet transform to decompose the hydro-meteorological data such as precipitation and temperature into the components with different return periods with a primary objective for extraction of nonlinear dynamical component. For the transform, we used the Daubechies wavelet of order 9 ('db9') as a basis function. Also, we applied the correlation dimension analysis to determine whether or not the detail and approximation components at the respective decomposition stage with the increasing of scale in the wavelet transform reveal the nonlinear dynamical characteristics. In other words, we proposed the combined use of the wavelet transform and the correlation dimension analysis as methodology to extract the nonlinear dynamical component from the hydro-meteorological data. The derived result has shown the method proposed in the present study is suitable for the segregation and extraction of the nonlinear dynamical component which is, in general, difficult to reveal by using the raw data.

The Effects of Acute Hemorrhage on Cardiopulmonary Dynamics in the Hypothermic Dog (급성사혈이 저온견의 심폐동태에 미치는 영향)

  • Lee, Jae Woon
    • Journal of Chest Surgery
    • /
    • v.2 no.1
    • /
    • pp.85-104
    • /
    • 1969
  • This experiment was carried out to study the effect of rapid hemorrhage on cardiopulmonary hemodynamics of the cooled dogs. Hypothermia was induced by means of body surface cooling with ice water. Lowest esophageal temperatures ranged from 24 to 26 degree. Dogs were bled via the femoral artery into a reservoir in amount of the equivalent blood volume of 3% of body weight of the dogs. Some dogs were reinfused with the same amount of blood which they lost and others infused with 5% dextrose solution. Fourty adult mongrel dogs were divided into three groups: group I[15 dogs]; dogs were bled in normothermic state. Five dogs had no further treatment, but five dogs were reinfused with blood and five infused with 5% dextrose solution 30 minutes after bleeding. GroupII[10 dogs]; dogs were bled as group I after having been cooled. Five dogs were reinfused with blood as group I. Group III[15 dogs]; dogs were first bled and then cooled. Reinfusion procedures were the same as in group l Results were as follow: 1. The heart rate showed a slight decrease after bleeding in group I and then increased over the control level after 60 minutes. After reinfusion and infusion, the heart rate was also increased gradually and after three hours almost returned to the control level. In group II and groupIll, the heart rate decreased remarkably and after reinfusion showed a light increase but after infusion tended to decrease cotinually. 2. The stroke volume showed remarkable decrease after bleeding in group I., and recovered to control level after reinfusion and infusion,and then gradually decreased again. In group III, the stroke volume showed no remarkable change after hypothermia, and tended to decrease after reinfusion. In group III, the stroke volume decreased remarkably after bleeding and hypothermia,and clearly increased after reinfusion and infusion and then returned to control level. 3. Femoral mean pressure declined very rapidly and significantly right after bleeding and showed a remarkable prompt rise after reinfusion and infusion in group I [67% recovery]. On the other hand, it declined remarkably after hypothermia and bleeding and showed a slight rise after reinfusion and infusion in group II[46% recovery] and III [41% recovery]. 4. Venous pressure declined slightly after bleeding and tended to return to the control level after reinfusion and infusion,in group I. In group II, it did not change significantly during hypothermia but showed a slight decline after bleeding and returned toward control level after reinfusion. In group III, it declined slightly after bleeding and showed no significant change after hypothermia and rose over the control level after reinfusion and infusion. 5. Right ventricular systolic pressure decreased markedly after bleeding and then increased progressively after 30 minutes. It increased after reinfusion and infusion as well, approaching the control level in group I. In group II, it showed no significant change during hypothermia, but decreased remarkably after bleeding and then returned to near control level after reinfusion. In group III, it was decreased markedly after bleeding but did not change significantly during hypothermia and showed a slight increase after reinfusion. 6. The respiratory rate increased gradually after bleeding and decreased gradually after reinfusion but did not return to the control level, whereas it decreased near to the control level after infusion,and tended to increase in group I. In group II, it decreased significantly after hypothermia and bleeding but returned near to the control level after reinfusion. In group III, it showed a remarkable decrease after hypothermia and increased slightly after reinfusion and infusion but did not returned to the control level. In group I, the tidal volume decreased slightly after hemorrhage, and increased gradually to near the control level after 3 hours following reinfusion.

  • PDF

Model on the Capillary Action-Induced Dynamics of Contact Lens (모세관 작용에 의한 콘택트 렌즈의 운동 모델)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.85-97
    • /
    • 2001
  • A mathematical model was proposed to analyze the damped motion of contact lens which is initially displaced from the equilibrium position. The model incorporates the differential equations and their numerical solution program, based on the formulations of restoring force arising from the capillary action in the tear-film layer between the lens and cornea. The model predicts the capillary action induced surface tension, time dependence of displacement of lens when it is released from the equilibrium position. It seems that the motion of lens is similar to the typical over-damped oscillation caused by the large viscous friction in the liquid layer between the cornea and lens. The effect of variables such as base curves, lens diameters and thickness of tear film layer were illustrated by the computer simulation of the derived program. The time required for the lens to return to the original position increases as the liquid layer thickness increases and it decreases as the diameter of lens increases. With the certain value of base curve the time interval is found to be minimum. The free vibrations of lenses were also simulated varying the parameters such as base curve, diameter, layer thickness. The resonant frequencies are inversely proportional to the liquid layer thickness and it increases as the lens diameter increases. The resonant frequency of lens has a maximum when the diameter is of certain value. If the external impulse or force of the same frequency as the natural frequency of contact lens acted on the cornea in vivo it may cause an excessive movement and thus it might cause the distortion 10 the lens or be pulled off the eye.

  • PDF

Health Services Utilization and Financial Performance of For-Profit versus Nonprofit Hospitals: A Study of General Acute Care Hospitals in the United States (미국 영리병원과 비영리병원의 의료이용도와 재무성과 비교)

  • Choi, Man-Kyu;Lee, Keon-Hyung;Lee, Bo-Hye
    • Health Policy and Management
    • /
    • v.18 no.4
    • /
    • pp.148-169
    • /
    • 2008
  • As the Korean Government began to perceive healthcare as one of foundational industries for national dynamics, there has been mounting advocacy for the introduction of for-profit hospitals with a view to bringing efficiency in healthcare services industries and improvement of their international competitiveness. The Government is now considering the issue from all angles in favor of permitting for-profit hospitals. However, There have been few precedent studies on this subject to provide helpful data for the discussion and in the health policy making. This study used private hospitals - for-profit and nonprofit - in Florida, USA as study subjects to accumulate basic data that may be utilized for those involved in debates and health policy making relating to the introduction of for-profit hospitals in Korea. Among all the private general hospitals in Florida, those surveyed by AHA(American Hospital Association) for four consecutive years from 2001 and 2004 and others reported about to MCR(Medicare Cost Report) included in the collected data for analysis. In total 139 private general hospitals consisting of 73 for-profit hospitals and 66 nonprofit hospitals were included in the collected analysis data. Results of analysis revealed no significant difference between for-profit hospitals and nonprofit hospitals in the usage aspects of healthcare services including the average length of stay and the ratio of Medicare vs Medicaid patients. However, financial performances indicated by such factors. as the pre-tax return on assets and the pre-tax operating margin showed to be significantly higher in for-profit hospitals compared with nonprofit hospitals. And the ratio of personnel expenses and the turn period of total assets showed to be significantly lower in for-profit hospitals. Based on the hypothesis that arguments about the introduction of for-profit hospitals have considerably different viewpoints depending on the size of hospital represented by the number of bed, these two hospital types were compared again using the number of beds as a controlled factor, but the results were similar. We, therefore, could conclude that the for-profit hospitals in Florida included in this study could, in their for-profit operation, improve their financial performance by pursuing cost reduction and effectively utilizing their assets without limiting the amount and the range of their services or avoiding less medically protected groups such as Medicare and Medicaid patients.

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

The Return of Great Power Competition to the Arctic (북극해 일대에서 본격화되기 시작한 강대국 경쟁)

  • Hong, Kyu-dok;Song, Seongjong;Kwon, Tae-hwan;JUNG, Jaeho
    • Maritime Security
    • /
    • v.2 no.1
    • /
    • pp.151-184
    • /
    • 2021
  • Global warming due to climate change is one of the biggest challenges in the 21st century. Global warming is not only a disaster that threatens the global ecosystem but also an opportunity to reduce logistics costs and develop mineral resources by commercializing Arctic routes. The Arctic paradox, in which ecological and environmental threats and new economic opportunities coexist, is expected to have a profound impact on the global environment. As the glaciers disappear, routes through the Arctic Ocean without passing through the Suez and Panama Canals emerged as the 'third route.' This can reduce the distance of existing routes by 30%. Global warming has also brought about changes in the geopolitical paradigm. As Arctic ice begins to melt, the Arctic is no longer a 'constant' but is emerging as the largest geopolitical 'variable' in the 21st century. Accordingly, the Arctic, which was recognized as a 'space of peace and cooperation' in the post-Cold War era, is now facing a new strategic environment in which military and security aspects are emphasized. After the Cold War, the Arctic used to be a place for cooperation centered on environmental protection, but it is once again changing into a stage of competition and confrontation between superpowers, heralding 'Cold War 2.0.' The purpose of this study is to evaluate the strategic value of the Arctic Ocean from geopolitical and geoeconomic perspectives and derive strategic implications by analyzing the dynamics of the New Cold War taking place in the Arctic region.

  • PDF

Simulation analysis and evaluation of decontamination effect of different abrasive jet process parameters on radioactively contaminated metal

  • Lin Zhong;Jian Deng;Zhe-wen Zuo;Can-yu Huang;Bo Chen;Lin Lei;Ze-yong Lei;Jie-heng Lei;Mu Zhao;Yun-fei Hua
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3940-3955
    • /
    • 2023
  • A new method of numerical simulating prediction and decontamination effect evaluation for abrasive jet decontamination to radioactively contaminated metal is proposed. Based on the Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) coupled simulation model, the motion patterns and distribution of abrasives can be predicted, and the decontamination effect can be evaluated by image processing and recognition technology. The impact of three key parameters (impact distance, inlet pressure, abrasive mass flow rate) on the decontamination effect is revealed. Moreover, here are experiments of reliability verification to decontamination effect and numerical simulation methods that has been conducted. The results show that: 60Co and other homogeneous solid solution radioactive pollutants can be removed by abrasive jet, and the average removal rate of Co exceeds 80%. It is reliable for the proposed numerical simulation and evaluation method because of the well goodness of fit between predicted value and actual values: The predicted values and actual values of the abrasive distribution diameter are Ф57 and Ф55; the total coverage rate is 26.42% and 23.50%; the average impact velocity is 81.73 m/s and 78.00 m/s. Further analysis shows that the impact distance has a significant impact on the distribution of abrasive particles on the target surface, the coverage rate of the core area increases at first, and then decreases with the increase of the impact distance of the nozzle, which reach a maximum of 14.44% at 300 mm. It is recommended to set the impact distance around 300 mm, because at this time the core area coverage of the abrasive is the largest and the impact velocity is stable at the highest speed of 81.94 m/s. The impact of the nozzle inlet pressure on the decontamination effect mainly affects the impact kinetic energy of the abrasive and has little impact on the distribution. The greater the inlet pressure, the greater the impact kinetic energy, and the stronger the decontamination ability of the abrasive. But in return, the energy consumption is higher, too. For the decontamination of radioactively contaminated metals, it is recommended to set the inlet pressure of the nozzle at around 0.6 MPa. Because most of the Co elements can be removed under this pressure. Increasing the mass and flow of abrasives appropriately can enhance the decontamination effectiveness. The total mass of abrasives per unit decontamination area is suggested to be 50 g because the core area coverage rate of the abrasive is relatively large under this condition; and the nozzle wear extent is acceptable.