• Title/Summary/Keyword: Retroviral transduction

Search Result 16, Processing Time 0.019 seconds

Comparison of Ectopic Gene Expression Methods in Rat Neural Stem Cells

  • Kim, Woosuk;Kim, Ji Hyeon;Kong, Sun-Young;Park, Min-Hye;Sohn, Uy Dong;Kim, Hyun-Jung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.23-30
    • /
    • 2013
  • Neural stem cells (NSCs) have the ability to proliferate and differentiate into various types of cells that compose the nervous system. To study functions of genes in stem cell biology, genes or siRNAs need to be transfected. However, it is difficult to transfect ectopic genes into NSCs. Thus to identify the suitable method to achieve high transfection efficiency, we compared lipid transfection, electroporation, nucleofection and retroviral transduction. Among the methods that we tested, we found that nucleofection and retroviral transduction showed significantly increased transfection efficiency. In addition, with retroviral transduction of Ngn2 that is known to induce neurogenesis in various types of cells, we observed facilitated final cell division in rat NSCs. These data suggest that nucleofection and retroviral transduction provide high efficiency of gene delivery system to study functions of genes in rat NSCs.

Split genome-based retroviral replicating vectors achieve efficient gene delivery and therapeutic effect in a human glioblastoma xenograft model

  • Moonkyung, Kang;Ayoung, Song;Jiyoung, Kim;Se Hun, Kang;Sang-Jin, Lee;Yeon-Soo, Kim
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.615-620
    • /
    • 2022
  • The murine leukemia virus-based semi-retroviral replicating vectors (MuLV-based sRRV) had been developed to improve safety and transgene capacity for cancer gene therapy. However, despite the apparent advantages of the sRRV, improvements in the in vivo transduction efficiency are still required to deliver therapeutic genes efficiently for clinical use. In this study, we established a gibbon ape leukemia virus (GaLV) envelope-pseudotyped semi-replication-competent retrovirus vector system (spRRV) which is composed of two transcomplementing replication-defective retroviral vectors termed MuLV-Gag-Pol and GaLV-Env. We found that the spRRV shows considerable improvement in efficiencies of gene transfer and spreading in both human glioblastoma cells and pre-established human glioblastoma mouse model compared with an sRRV system. When treated with ganciclovir after intratumoral injection of each vector system into pre-established U-87 MG glioblastomas, the group of mice injected with spRRV expressing the herpes simplex virus type 1-thymidine kinase (HSV1-tk) gene showed a survival rate of 100% for more than 150 days, but all control groups of mice (HSV1-tk/PBS-treated and GFP/GCV-treated groups) died within 45 days after tumor injection. In conclusion, these findings sug-gest that intratumoral delivery of the HSV1-tk gene by the spRRV system is worthy of development in clinical trials for the treatment of malignant solid tumors.

The optimal conditions to improve retrovirus-mediated transduction efficiency to NIH 3T3 cells (레트로바이러스(retrovirus)의 NIH 3T3 세포로의 유전자 전달효율을 증가시키기 위한 적절한 조건들)

  • Lee, Jun Ah;Lee, Kang-Min;Lee, Hyun Jae;Lee, Yun Jeong;Kim, Dong Ho;Lim, Jung Sub;Park, Kyung-Duk
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.10
    • /
    • pp.1011-1017
    • /
    • 2007
  • Purpose : We tried to assess the optimal conditions to improve low transduction efficiency and their effect on target cells. Methods : Cultured NIH 3T3 cells were incubated with retroviral vectors bearing an enhanced green fluorescent protein (eGFP) gene. We varied the ratio of viral vectors to target cells (1:1-1:8) and the number of transfections (${\times}1$, ${\times}2$), and compared transduction efficiencies. Also, the effects of polybrene on transduction efficiency and viability of target cells were assessed. Transduction of the eGFP gene was evaluated by observing NIH 3T3 cells under a fluorescence microscope and efficiencies were measured by the percentage of eGFP positive cells using FACscan. Results : As the ratio of retroviral vectors to target cells increased, transduction efficiency was greatly improved, from 7% (1:1) to 38% (1:4). However, transduction efficiency did not increase any more when the ratio increased from 1:4 to 1:8. Cells transfected twice showed higher transduction efficiencies than cells transfected once, at a ratio of 1:8. The eGFP gene transduced to NIH 3T3 cells sustained its expression during repeated passages. However, after the third passage (day 9), the percentage of eGFP positive cells began to decline. The degree of this decline in eGFP expression was lower in cells transfected twice than in cells transfected once (P<0.05). The addition of polybrene did not have any toxic effect on NIH 3T3 cells and greatly increased transduction efficiency (P=0.007). In addition to vector component, transduction efficiency was very sensitive to culture confluence. Cells cultured and transfected in 24-well plate showed higher transduction efficiency, although cells cultured in 6- well plate proliferated more (P=0.024). Conclusion : Our data could be used as a basis for retrovirus-based gene therapy. Further study will follow using human cells as target cells.

Enforced Expression of CXCR5 Drives T Follicular Regulatory-Like Features in Foxp3+ T Cells

  • Kim, Young Uk;Kim, Byung-Seok;Lim, Hoyong;Wetsel, Rick A.;Chung, Yeonseok
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.130-139
    • /
    • 2017
  • $CXCR5^+$ T follicular helper (Tfh) cells are associated with aberrant autoantibody production in patients with antibody-mediated autoimmune diseases including lupus. Follicular regulatory T (Tfr) cells expressing CXCR5 and Bcl6 have been recently identified as a specialized subset of $Foxp3^+$ regulatory T (Treg) cells that control germinal center reactions. In this study, we show that retroviral transduction of CXCR5 gene in $Foxp3^+$ Treg cells induced a stable expression of functional CXCR5 on their surface. The Cxcr5-transduced Treg cells maintained the expression of Treg cell signature genes and the suppressive activity. The expression of CXCR5 as well as Foxp3 in the transduced Treg cells appeared to be stable in vivo in an adoptive transfer experiment. Moreover, Cxcr5-transduced Treg cells preferentially migrated toward the CXCL13 gradient, leading to an effective suppression of antibody production from B cells stimulated with Tfh cells. Therefore, our results demonstrate that enforced expression of CXCR5 onto Treg cells efficiently induces Tfr cell-like properties, which might be a promising cellular therapeutic approach for the treatment of antibody-mediated autoimmune diseases.

Vitamin C promotes the early reprogramming of fetal canine fibroblasts into induced pluripotent stem cells

  • Sang Eun Kim;Jun Sung Lee;Keon Bong Oh;Jeong Ho Hwang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.199-208
    • /
    • 2023
  • Background: Canine induced pluripotent stem cells (iPSCs) are an attractive source for veterinary regenerative medicine, disease modeling, and drug development. Here we used vitamin C (Vc) to improve the reprogramming efficiency of canine iPSCs, and its functions in the reprogramming process were elucidated. Methods: Retroviral transduction of Oct4, Sox2, Klf4, c-Myc (OSKM), and GFP was employed to induce reprogramming in canine fetal fibroblasts. Following transduction, the culture medium was subsequently replaced with ESC medium containing Vc to determine the effect on reprogramming activity. Results: The number of AP-positive iPSC colonies dramatically increased in culture conditions supplemented with Vc. Vc enhanced the efficacy of retrovirus transduction, which appears to be correlated with enhanced cell proliferation capacity. To confirm the characteristics of the Vc-treated iPSCs, the cells were cultured to passage 5, and pluripotency markers including Oct4, Sox2, Nanog, and Tra-1-60 were observed by immunocytochemistry. The expression of endogenous pluripotent genes (Oct4, Nanog, Rex1, and telomerase) were also verified by PCR. The complete silencing of exogenously transduced human OSKM factors was observed exclusively in canine iPSCs treated with Vc. Canine iPSCs treated with Vc are capable of forming embryoid bodies in vitro and have spontaneously differentiated into three germ layers. Conclusions: Our findings emphasize a straightforward method for enhancing the efficiency of canine iPSC generation and provide insight into the Vc effect on the reprogramming process.

Highly Efficient Gene Delivery into Transfection-Refractory Neuronal and Astroglial Cells Using a Retrovirus-Based Vector

  • Kim, Byung Oh;Pyo, Suhkneung
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.451-454
    • /
    • 2005
  • Introduction of foreign genes into brain cells, such as neurons and astrocytes, is a powerful approach to study the gene function and regulation in the neuroscience field. Calcium phosphate precipitates have been shown to cause cytotoxicity in some mammalian cells and brain cells, thus leading to low transfection efficiency. Here, we describe a retrovirus-mediated gene delivery method to transduce foreign genes into brain cells. In an attempt to achieve higher gene delivery efficiency in these cells, we made several changes to the original method, including (1) use of a new packaging cell line, Phoenix ampho cells, (2) transfection of pMX retroviral DNA, (3) inclusion of 25 mM chloroquine in the transduction, and (4) 3- 5 h incubation of retroviruses with target cells. The results showed that the modified protocol resulted in a range of 40- 60% gene delivery efficiency in neurons and astrocytes. Furthermore, these results suggest the potential of the retrovirus-mediated gene delivery protocol being modified and adapted for other transfection-refractory cell lines and primary cells.

Enhanced Anti-tumor Reactivity of Cytotoxic T Lymphocytes Expressing PD-1 Decoy

  • Jae Hun Shin;Hyung Bae Park;Kyungho Choi
    • IMMUNE NETWORK
    • /
    • v.16 no.2
    • /
    • pp.134-139
    • /
    • 2016
  • Programmed death-1 (PD-1) is a strong negative regulator of T lymphocytes in tumor-microenvironment. By engaging PD-1 ligand (PD-L1) on tumor cells, PD-1 on T cell surface inhibits anti-tumor reactivity of tumor-infiltrating T cells. Systemic blockade of PD-1 function using blocking antibodies has shown significant therapeutic efficacy in clinical trials. However, approximately 10 to 15% of treated patients exhibited serious autoimmune responses due to the activation of self-reactive lymphocytes. To achieve selective activation of tumor-specific T cells, we generated T cells expressing a dominant-negative deletion mutant of PD-1 (PD-1 decoy) via retroviral transduction. PD-1 decoy increased IFN-γ secretion of antigen-specific T cells in response to tumor cells expressing the cognate antigen. Adoptive transfer of PD-1 decoy-expressing T cells into tumor-bearing mice potentiated T cell-mediated tumor regression. Thus, T cell-specific blockade of PD-1 could be a useful strategy for enhancing both efficacy and safety of anti-tumor T cell therapy.

Herpes Simplex Virus Thymidine Kinase Gene Therapy Delivered by Retroviral or Adenoviral Vector in Mouse Model of Lewis Lung Carcinoma (Lewis 폐암 마우스 모델에서 Retroviral Vector나 Adenoviral Vector로 이입된 Herpes Simplex Virus Thymidine Kinase 유전자치료)

  • Kwon, Hee-Chung;Jeong, Jae-Min;Kim, Jung-Hyeon;Ham, Yong-Ho;Seo, Ji-Sook;Lee, Ki-Ho;Kim, Chang-Min;Lee, Han-Soo;Lee, Choon-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.3
    • /
    • pp.298-309
    • /
    • 2000
  • Background : The antitumor effects of herpes simplex virus thymidine kinase (HSV-tk) and ganciclovir (GCV) strategies for cancer gene therapy have a the following advantages : 1) a direct cytotoxicity to HSV-tk modified cancer cells by GCV 2) a cell death by the local transfer of toxic metabolites from the HSV-tk modified cells to nearby unmodified tumor cells (bystander effect), and 3) in vivo bystander effect such as antitumor-immunity. Retroviral and adenoviral sequences can silence transgene expression in cells and mice. In this study, we investigated the above described advantages of HSV-tk/GCV strategy in Lewis lung cell and mouse lung cancer model using retroviral vector and adenoviral vector. Also, we observed whether the expression of a silenced gene can be reactivated by treating cells with butyrate. Methods : Retrovirus-HSV-tk and adenovirus-HSV-tk vectors were used for the transduction of Lewis lung carcinoma (LLC) cells. The change of HSV-tk expression by butyrate was measured by Western blol The antitumor activities containing bystander effect were observed in vivo (by MTT assay) and in vivo tumor models of various combinations of LLC and LLC-tk. Results : 1. Butyrate induced the enhancement of HSV-tk expression from adenovirally transduced cells but not from retrovirally transduced cells. 2. Both retrovirus-HSV-tk and adenovirus-HSV-tk vectors with GCV treatment were effective for killing of tumor cell in vitro and suppression of LLC tumorigenicity. Bystander effect was responsible for killing of mixture of LLC-tk and LLC in vitro and in vivo-tumorigenicity model. Conclusion : Butyrate could augment adenovirus-mediated HSV -tk gene expression. Cancer gene therapy with HSV-tk suicide gene by retroviral and adenoviral vector seems to be an effective approach for lung cancer therapy.

  • PDF

Efficient Generation of BLCL Expressing Foreign Antigen as Antigen-presenting Cells with Recombinant Retroviruses

  • Hyun-Il Cho;Soon-Young Pail;Il-Hoan OH;Kyun-Jung Ahn;Dong-Wook Kim
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.300-304
    • /
    • 2001
  • Epstein-Barr Virus(EBV)-transformed lymphoblastoid B cell lines, BLCL which expresse antigens, are potential antigen-presenting cells(APCs) for the induction of CTL in vitro. However transfection of BLCLs with subsequent selection by antibiotics is notoriously difficult because plating efficiencies of BLCLsare reported to be 1% or less. To generated stable transfectants of BLCLs we produced high titers of retroviruess encoding pp 65 antigen of human cytomegalovirus of foreign antigens and trans-duced them of BLCLs. The pp 65 gene was cloned into the retroviral vector pLXSN. The recombinant retroviral vector was transfected to ecotropic packaging cell line, CP&E86, and this polyclonal recom-binant retrovirus was transduced to PA317 that is amphotropic pakaging cell line. The titers of colned PA317 amphotropic retroviruses ranged from 5 to $\times$10$^{6}$ colony forming units (CFU)per ml (CFU/ml) We performed three rounds of consecutive transductions to BLCLs in order to improve the clon-ing effieiencies. The expression of recombinant HCMV-pp65 antigen was more than 20% after the final transduction. THe third-transduced BLCLs were easily selected in optimal concentration of G418. BLCLs expressing foreign antigens could be used as target cells for CTL assay and/or as APCs for induction of in vitro CTL responses specific for viral and tumor antigens.

  • PDF

Effect of Sucrose and Polybrene on the Gene Transfer into Porcine Oocytes using Retroviral Vector (레트로 바이러스 벡터를 이용한 돼지난자에의 유전자 전이에 있어 Sucrose와 Polybrene의 효과)

  • Kim, . K.S.;M.S. Kwon;J.Y. Ju;Kim, K.S.;Kim, T.;Lee, H.T.;K.S. Chung
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.2
    • /
    • pp.153-163
    • /
    • 2002
  • In vitro matured porcine oocytes have very small volume of perivitellinspace (PVS). In these respect, the effect of sucrose and polybrene on the efficiency of gene transfer was investigated. As a gene (hGH) transfer vehicle, vesicular stomatitis virus glycoprotein pseudotyped retroviral vector (VSV-G) was used. Sucrose treatment has no detrimental effect on the rates of cleavage and resulted in the enlargement of PVS for the efficient introduction of retroviral vector stocks. Introduction rates of retrovirus in 0.5, 1, 2, 3 % sucrose treatment group were higher than that of the non-treatment group (39.3, 43.3, 35.7, 40.7 % vs. 8.3 %), respectively. In addition, we observed that sucrose pretreatment during injection procedure significantly reduce the frequency of polyspermy. In general, polybrene is a polycation essential for retrovirus transduction. The groups with the addition of 0.5, 5, 50$\mu\textrm{g}$/$m\ell$ polybrene exhibited a significant effect on gene transfer compared to that of the non-addition group (56.5, 50.0, 57.1 % vs. 34.6 %), respectively But, when the oocytes were co-injected with retrovirus and 50$\mu\textrm{g}$/$m\ell$ polybrene, the rates of cleavage and blastocyst development were 43.3 and 4.6%, respectively. This rates were lower than those of the non-addition group (70.0 and 17.3 %). In conclusion, sucrose pretreatment have increased efficiency of retroviral mediated gene transfer in porcine oocytes with no damage on in vitro fertilization and embryo development. In addition, sucrose pretreatment was beneficial in polyspermy inhibition. Presence of polybrene during microinjection showed a beneficial effect on the gene transfer in porcine oocytes, in low concentration. And these results will provide an useful tool for production of transgenic pigs by retroviral mediated gene transfer.