The optimal conditions to improve retrovirus-mediated transduction efficiency to NIH 3T3 cells

레트로바이러스(retrovirus)의 NIH 3T3 세포로의 유전자 전달효율을 증가시키기 위한 적절한 조건들

  • Lee, Jun Ah (Department of Pediatrics, Korea Cancer Center Hospital) ;
  • Lee, Kang-Min (Department of Pediatrics, Korea Cancer Center Hospital) ;
  • Lee, Hyun Jae (Department of Pediatrics, Korea Cancer Center Hospital) ;
  • Lee, Yun Jeong (Department of Pediatrics, Korea Cancer Center Hospital) ;
  • Kim, Dong Ho (Department of Pediatrics, Korea Cancer Center Hospital) ;
  • Lim, Jung Sub (Department of Pediatrics, Korea Cancer Center Hospital) ;
  • Park, Kyung-Duk (Department of Pediatrics, Korea Cancer Center Hospital)
  • Received : 2007.06.20
  • Accepted : 2007.08.01
  • Published : 2007.10.15

Abstract

Purpose : We tried to assess the optimal conditions to improve low transduction efficiency and their effect on target cells. Methods : Cultured NIH 3T3 cells were incubated with retroviral vectors bearing an enhanced green fluorescent protein (eGFP) gene. We varied the ratio of viral vectors to target cells (1:1-1:8) and the number of transfections (${\times}1$, ${\times}2$), and compared transduction efficiencies. Also, the effects of polybrene on transduction efficiency and viability of target cells were assessed. Transduction of the eGFP gene was evaluated by observing NIH 3T3 cells under a fluorescence microscope and efficiencies were measured by the percentage of eGFP positive cells using FACscan. Results : As the ratio of retroviral vectors to target cells increased, transduction efficiency was greatly improved, from 7% (1:1) to 38% (1:4). However, transduction efficiency did not increase any more when the ratio increased from 1:4 to 1:8. Cells transfected twice showed higher transduction efficiencies than cells transfected once, at a ratio of 1:8. The eGFP gene transduced to NIH 3T3 cells sustained its expression during repeated passages. However, after the third passage (day 9), the percentage of eGFP positive cells began to decline. The degree of this decline in eGFP expression was lower in cells transfected twice than in cells transfected once (P<0.05). The addition of polybrene did not have any toxic effect on NIH 3T3 cells and greatly increased transduction efficiency (P=0.007). In addition to vector component, transduction efficiency was very sensitive to culture confluence. Cells cultured and transfected in 24-well plate showed higher transduction efficiency, although cells cultured in 6- well plate proliferated more (P=0.024). Conclusion : Our data could be used as a basis for retrovirus-based gene therapy. Further study will follow using human cells as target cells.

목 적 : 쥐의 섬유아세포인 NIH 3T3와 eGFP 유전자를 표지로 하는 레트로바이러스 벡터를 이용하여 유전자 전달효율을 향상시킬 수 있는 조건들을 살펴보고자 하였다. 방 법 : 표적세포에 대한 벡터의 비율과(1:1-1:8) 전달감염 횟수를 변화시켰을 때(1회, 2회), 양이온 복합체인 polybrene($4{\mu}g/mL$)을 첨가하였을 때 유전자 전달효율의 변화를 분석하였다. eGFP 유전자의 발현을 확인하기 위하여 형광 현미경 하에서 녹색빛을 내는 세포들을 관찰하고 FACscan으로 eGFP 양성세포의 비율을 측정하였다. 결 과 : 유전자 전달효율은 벡터와 표적세포의 비율 1:1에서 7%, 1:4에서 38%로 표적세포에 대한 레트로바이러스 벡터의 비율이 높을수록 상승하였지만 비율 1:4와 1:8사이에서는 차이가 없었다. 전달감염을 두 번 시행하는 것이 벡터와 표적세포의 비율 1:4까지는 유전자 전달효율에 영향을 미치지 않았지만 비율 1:8에서는 유전자 전달효율을 증가시켰다. 전달감염 후 eGFP 유전자의 발현은 3회 계대배양까지 약 3배 가량 증가하였지만 이후에는 감소하였는데 이와 같은 감소 정도는 전달감염을 한 번 시행한 경우가 두 번 시행한 경우보다 더 커서 전달감염을 반복하는 것이 유전자 전달효율의 증가효과보다는 주입된 유전자의 지속발현에 더 영향을 미치는 것으로 판단되었다. Polybrene을 첨가하였을 때 유전자 전달효율은 5.8%에서 38.8%로 대폭 상승하였으며 독성반응은 관찰되지 않았다. 배양접시의 크기에 따른 유전자 전달효율을 비교하였을 때 NIH 3T3세포의 증식정도는 6-well plate가 더 컸지만 eGFP 양성세포의 비율은 24-well plate에서 더 높았다. 결 론 : 이번 연구결과를 기초로 삼아 유전자 치료의 연구를 발전시키고 특히 전달된 유전자의 안정적인 발현과 바이러스 벡터들의 독성 등에 대하여 향후 연구의 초점을 두어야 할 것으로 생각된다.

Keywords

Acknowledgement

Supported by : 한국혈우재단

References

  1. Verma IM, Somia N. Gene therapy promises, problems and prospects. Nature 1997;389:239-42 https://doi.org/10.1038/38410
  2. Cavazzana-Calvo M, Thrasher A, Mavilio F. The future of gene therapy: balancing the risks and benefits of clinical trials. Nature 2004;427:779-81 https://doi.org/10.1038/427779a
  3. Zhong Q, Kolls JK, Schwarzenberger P. Retrovirus molecular conjugates. A novel, high transduction efficiency, potentially safety-improved, gene transfer systems. J BioI Chem 2001; 276:24601-7 https://doi.org/10.1074/jbc.M010318200
  4. Chen M, Li W, Fan J, Kasahara N, Woodley D. An efficient gene transduction system for studying gene function in primary human dermal fibroblasts and epidermal keratinocytes. Clin Exp Dermatol 2003;28:193-9 https://doi.org/10.1046/j.1365-2230.2003.01191.x
  5. Davis HE, Morgan JR, Yarmush ML. Polybrene increases retrovirus gene transfer efficiency by enhancing receptorindependent virus adsorption on target cell membranes. Biophys Chem 2002;97:159-72 https://doi.org/10.1016/S0301-4622(02)00057-1
  6. Morgan JR, LeDoux JM, Snow RG, Tompkins RG, Yarmush ML. Retrovirus infection: effect of time and target cell number. J Virol 1995;69:6994-7000
  7. Palsson B, Andreadis S. The physico-chemical factors that govern retrovirus-mediated gene transfer. Exp. Hematol 1997;25:94-102
  8. Paya M, Segovia JC, Santiago B, Galindo M, del Rio P, Pablos JL, et al. Optimising stable retroviral transduction of primary human synovial fibroblasts. J Virol Methods 2006; 137:95-102 https://doi.org/10.1016/j.jviromet.2006.06.005
  9. Seitz B, Baktanian E, Gordon EM, Anderson WF, LaBree L, McDonnell PJ Retroviral vector-mediated gene transfer into keratocytes: In vitro effects of polybrene and protamine sulfate. Arch Clin Exp Ophthalmol 1998;236:602-12 https://doi.org/10.1007/s004170050129
  10. Orlic D, Girard LJ, Anderson SM, Do BK, Seidel NE, Jordan CT, et al. Transduction efficiency of cell lines and hematopoietic stem cells correlates with retrovirus receptor mRNA levels. Stem cells 1997;15 Suppl 1:23-8 https://doi.org/10.1002/stem.5530150805
  11. Slingsby JH, Baban D, Sutton J, Esapa M, Price T, Kingsman SM, et al. Analysis of 4070A envelope levels in retro viral preparations and effect on target cell transduction efficiency. Hum Gene Ther 2000;11:1439-51 https://doi.org/10.1089/10430340050057512
  12. Neufeld G, Gospodarowicz D. Protamine sulfate inhibits mitogenic activities of the extracellular matrix and fibroblast growth factor, but potentiates that of epidermal growth factor. J Cell Physiol 1987;132:287-94 https://doi.org/10.1002/jcp.1041320213
  13. Mok HP, Lever A. A method to estimate the efficiency of gene expression from an integrated retroviral vector. Retrovirology 2006;3:51 https://doi.org/10.1186/1742-4690-3-51
  14. Nash KL, Lever AML. Green fluorescent protein: green cells do not always indicate gene expression. Gene Ther 2004;11: 882-3 https://doi.org/10.1038/sj.gt.3302246