Effect of Sucrose and Polybrene on the Gene Transfer into Porcine Oocytes using Retroviral Vector

레트로 바이러스 벡터를 이용한 돼지난자에의 유전자 전이에 있어 Sucrose와 Polybrene의 효과

  • Kim, . K.S. (Animal Resources Research Center, Konkuk University) ;
  • M.S. Kwon (Catholic Univ. of Daegu School of Medicine) ;
  • J.Y. Ju (Animal Resources Research Center, Konkuk University) ;
  • Kim, K.S. (Animal Resources Research Center, Konkuk University) ;
  • Kim, T. (Catholic Univ. of Daegu School of Medicine) ;
  • Lee, H.T. (Animal Resources Research Center, Konkuk University) ;
  • K.S. Chung (Animal Resources Research Center, Konkuk University)
  • Published : 2002.06.01

Abstract

In vitro matured porcine oocytes have very small volume of perivitellinspace (PVS). In these respect, the effect of sucrose and polybrene on the efficiency of gene transfer was investigated. As a gene (hGH) transfer vehicle, vesicular stomatitis virus glycoprotein pseudotyped retroviral vector (VSV-G) was used. Sucrose treatment has no detrimental effect on the rates of cleavage and resulted in the enlargement of PVS for the efficient introduction of retroviral vector stocks. Introduction rates of retrovirus in 0.5, 1, 2, 3 % sucrose treatment group were higher than that of the non-treatment group (39.3, 43.3, 35.7, 40.7 % vs. 8.3 %), respectively. In addition, we observed that sucrose pretreatment during injection procedure significantly reduce the frequency of polyspermy. In general, polybrene is a polycation essential for retrovirus transduction. The groups with the addition of 0.5, 5, 50$\mu\textrm{g}$/$m\ell$ polybrene exhibited a significant effect on gene transfer compared to that of the non-addition group (56.5, 50.0, 57.1 % vs. 34.6 %), respectively But, when the oocytes were co-injected with retrovirus and 50$\mu\textrm{g}$/$m\ell$ polybrene, the rates of cleavage and blastocyst development were 43.3 and 4.6%, respectively. This rates were lower than those of the non-addition group (70.0 and 17.3 %). In conclusion, sucrose pretreatment have increased efficiency of retroviral mediated gene transfer in porcine oocytes with no damage on in vitro fertilization and embryo development. In addition, sucrose pretreatment was beneficial in polyspermy inhibition. Presence of polybrene during microinjection showed a beneficial effect on the gene transfer in porcine oocytes, in low concentration. And these results will provide an useful tool for production of transgenic pigs by retroviral mediated gene transfer.

본 연구에서는 레트로 바이러스를 이용하여 형질전환 돼지를 생산하기 위한 기초 연구로써 유전자 도입 효율을 증진시키기 위해 sucrose와 poly-brene을 사용하여 그 효과를 조사하였다. 유전자(hGH) 전달체로는 vesicular stomatitis virus gly-coprotein pseudotyped retroviral vector (VSV-G)를 사용하였다. 체외에서 성숙된 돼지 난자는 매우 협소한 위란강내 공간을 가지며 따라서 위란강내 공간의 확장은 필수조건이다. sucrose 처리는 수정율및 배발달에는 영향을 미치지 않았으며 sucrose 처리를 통해 돼지난자는 위란강의 공간이 확장되어 충분한 양의 바이러스 벡터의 주입이 가능하였다. PCR 분석 결과 8.3 %의 유전자 도입율을 나타낸 무처리군에 비해 0.5, 1, 2, 3 % sucrose 처리군에서 39.3, 43.3, 35.7, 40.7 %의 높은 유전자 도입율을 나타내었다. 추가적으로 돼지난자는 sucrose 처리에 의해 다정자 침입의 억제 효과를 나타내었다. 일반적으로 레트로 바이러스를 이용한 세포에의 높은 유전자 도입 효과를 나타내는 것으로 알려진 polybrene을 바이러스와 공동 주입한 결과 0.5, 5, 50$\mu\textrm{g}$/$m\ell$의 농도에서 각각 56.5, 50.0, 57.1 %의 도입율을 나타냄으로써 바이러스 단독 주입군의 34.6%보다 높은 효율을 나타내었다. 그러나 50$\mu\textrm{g}$/$m\ell$의 농도를 주입하였을 경우, 분할율과 배반포발달율이 43.3 및 4.6%를 나타냄으로써 바이러스 단독주입군의 72.0, 17.3%보다 유의적으로 낮았다. 이상의 결과를 종합할 때, sucrose의 처리는 돼지 난자의 발달에 영향을 주지 않으며 유전자 도입효율을 증진시킬 수 있었으며, 추가적으로 다정자 침입억제효과를 보였다. 또한 polybrene의 사용은 낮은 농도에서 유전자 도입효율을 증진시켰다. 이러한 결과들은 형질 전환 돼지의 생산 가능성을 높이는데 이용될 수 있다고 사료된다.

Keywords

References

  1. Abeydeera, L. R. 2002. In vitro production of embryos in swine. Theriogenology, 57(1):256273
  2. Andreaids, S. and Palsson, B. 1996. Kinetics of retrovirus-mediated gene transfer: the importance of intracellular half-life. J. Theoret. Bio!., 182:1-20
  3. Aubin, R., Weinfeld, M., Mirzayans, R. and Paterson, M. 1994. Polybeene/ DMSD-assisted gene transfer. Generating stable transfectants with nanogram amounts of DNA. Mol. Biotechnol., 1:29-48
  4. Bradbury, S. L. and Jakoby, W. B. 1972. Glycerol as an enzyme-stabilizing agent: effects on aldehyde dehydrogenase. Proc. Natl. Acad. Sci. USA. 69(9):2373-2376 https://doi.org/10.1073/pnas.69.9.2373
  5. Bums, J. C., Friedmann, T., Driever, W., Burrascano, M. and Yee, J. K. 1993. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors : Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA., 90:8033-8037 https://doi.org/10.1073/pnas.90.17.8033
  6. Chan, A. W., Homan, E. J., Ballou, L. U., Burns, J. C. and Bremel, R. D. 1998. Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. Proc. Natl. Acad. Sci. USA. 95(24): 14028-14033 https://doi.org/10.1073/pnas.95.24.14028
  7. Chan, A. W., Chong, K. Y., Martinovich, C., Simerly, C. and Schatten, G. 2001. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science, 291(5502):309312
  8. Chuck, S. 1995. Direct retroviral motion as a means of enhancing gene transfer for gene therapy. Ph. D. thesis, University of Michigan
  9. Chuck, A. S., Clarke, M. F. and Palssion, B. O. 1996. Retroviral infection is limited by Brownian motion. Hum. Gene. Ther., 7(13):1527-1534 https://doi.org/10.1089/hum.1996.7.13-1527
  10. Coelen, R. J, Jose, D. G. and May, J. T. 1983. The effect of hexadimethrine bromide (polybrene) on the infection of the primate retroviruses SSV l/SSAV I and BaEV. Arch. Virol., 75(4): 307-31 https://doi.org/10.1007/BF01314897
  11. Collas, P. and Barnes, F. L. 1994. Nuclear transplantation by microinjection of inner cell mass and granulosa cell nuclei. Mol. Reprod. Dev., 38(3):264-267 https://doi.org/10.1002/mrd.1080380306
  12. Coller, B. S. 1980. Polybrene-induced platelet agglutination and reduction in electrophoretic mobility: enhancement by von Willebrand factor and inhibition by vancomycin. Blood., 55(2) :276-281
  13. Coy, P., Ruiz, S., Romar, R., Campos, I. and Gadea, J. 1999. Maturation, fertilization and complete development of porcine oocytes matured under different systems. Theriogenology, 51(4): 799-812
  14. Cran, D. G. and Cheng, W. T. K. 1986. The cortical reaction in pig oocytes during in vivo and in viro fertilization. Gamete Res., 13:241251
  15. Frigon, R. P. and Lee, J. C. 1972. The stabilization of calf-brain microtubule protein by sucrose. Arch. Biochem. Biophys., 153(2):587 -9 https://doi.org/10.1016/0003-9861(72)90376-1
  16. Gordon, J. W. and Ruddle, F. H. 1983. Gene transfer into mouse embryos: production of transgenic mice by pronuclear injection. Methods Enzymol., 101:411-433 https://doi.org/10.1016/0076-6879(83)01031-9
  17. Jeong, B. S. and Yang, X. 2001. Cysteine, glutathione, and Percoll treatments improve porcine oocyte maturation and fertilization in vitro. Mol. Reprod. Dev., 59(3):330-5
  18. Kim, T., Leibfried-Rutledge, M. L. and First, N. L. 1993. Gene transfer in bovine blastocysts using replication-defective retroviral vectors packaged with Gibbon ape leukemia virus envelopes. Mol. Reprod. Dev., 35:105-113 https://doi.org/10.1002/mrd.1080350202
  19. Kim, T. W., Lee, Y. M., Lee, H. T., Heo, Y. T., Yom, H. C., Kwon, M. S., Koo, B. C., Whang, K. and Roh, K. S. 2001. Expression of the E. coli LacZ gene in chicken embryos using replication defective retroviral vectors packaged with vesicular stomatitis virus G glyoprotein envelopes. to be published in Asian-Australasian J. Animal Sci., 14:163-169
  20. Kouba, A. J, Abeydeera, L. R., Alvarez, I. M., Day, B. N. and Buhi, W. C. 2000. Effects of the porcine oviduct-specific glycoprotein on fertilization, polyspermy, and embryonic development in vitro. Biol Reprod., 63(1):242-250 https://doi.org/10.1095/biolreprod63.1.242
  21. Kulkosky, J. and Skalka, A. M. 1994. Molecular mechanism of retroviral DNA integration. Pharmacol. Ther., 61(1-2):185-203
  22. Marsh, M. and Helenius, A. 1989. Virus entry into animal cells. Adv. Virus. Res., 36:107-151 https://doi.org/10.1016/S0065-3527(08)60583-7
  23. Mastromarino, P., Conti, C., Goldoni, P., Hauttecoeur, B. and Orsi, N. 1987. Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH. J. Gen. Virol., 68(Pt 9):2359-2369
  24. Masui, Y. and Clarke, H. J. 1979. Oocyte maturation. Int. Rev. Cytol., 57:185-282 https://doi.org/10.1016/S0074-7696(08)61464-3
  25. Miller, A. D., Garcia, J. V., Suhr, N. V., Lynch, C. M., Wilson, C. and Eiden, M. V. 1991. Concentration and properties of retrovirus packaging cells based on Gibbon ape leukemia virus. J. Virol., 65:2220-2224
  26. Mullier, M. and Brem, G. 1994. Transgenic strategies to increase disease resistance in livestock. Reprod. Fertil. Dev., 6:605-616 https://doi.org/10.1071/RD9940605
  27. Niemann, H. and Kues, W. A. 2000. Transgenic livestock: premises and promises. Anim. Reprod. Sci., 2:277-293
  28. Niwa, K. 1993. Effectiveness of in vitro maturation and in vitro fertilization techniques in pigs. J. Reprod. Fertil. Suppl., 48:49-59
  29. Panganiban, A. T. and Temin, H. M. 1984. The retrovirus pol gene encodes a product required for DNA integration : identification of a retrovirus int locus. Proc. Nat!. Acad. Sci. USA. 81(24):7885-7889 https://doi.org/10.1073/pnas.81.24.7885
  30. Parrish, J. J., Susko-parrish, J., Winer, M. A. and First, N. L. 1988. Capacitation of the bovine sperm by heparine. Biol. Reprod., 38:1171-1180 https://doi.org/10.1095/biolreprod38.5.1171
  31. Rosenkrans, C. F., Zeng, G. Q., McNamara, G. T., Scfoff, O. K. and First, N. L. 1993. Development of bovine embryos in vitro as affected by energy substrates. Biol. Reprod., 49:1053-1060
  32. Saito, N., Imai, K. and Tomizawa, M. 1994. Effect of sugar-addition on the survival of vitrified bovine blastocysts produced in vitro. Theriogenology, 41:1053-1060
  33. Toyoshima, K. and Vogt, P. 1969. Enhancement and inhibition of avian sarcoma viruses by polycations and polyanions.J1. Virol., 63: 3865-3869
  34. Wang, W. H., Lalantha, R., Abeydeera, L. R., Prather, R. S. and Day, B. N. 1988. Morphologic comparison of ovulated and in vitro-matured porcine oocytes, with particular reference to polyspermy after in vitro fertilization Mol. Reprod. Dev., 49:308-316 https://doi.org/10.1002/(SICI)1098-2795(199803)49:3<308::AID-MRD11>3.0.CO;2-S
  35. Wang, W. H., House, M. and Shioya, Y. 1997. Induction of cortical granule exocytosis of pig oocytes by spermatozoa during meiotic maturation. J. Reprod. Fertil., 109:247-255 https://doi.org/10.1530/jrf.0.1090247
  36. Wang, M. K., Liu, G. P., Lian, L. and Chen, D. Y. 2001. Sucrose pretreatment for enucleation: An efficient and non-damage method for removing the spindle of the mouse MII oocytes. Mol. Reprod. Dev., 58:432-436 https://doi.org/10.1002/1098-2795(20010401)58:4<432::AID-MRD11>3.0.CO;2-Y
  37. Wheeler, M. B. and Walters, E. M. 2001. Transgenic technology and applications in swine. Theriogenology, 56(8): 1345-1369 https://doi.org/10.1016/S0093-691X(01)00635-5
  38. Vee, J. K., Friedmann, T. and Bums, J. C. 1994. Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods in Cell Biol., 43:99-112 https://doi.org/10.1016/S0091-679X(08)60600-7