• Title/Summary/Keyword: Retrieval Relevance

Search Result 160, Processing Time 0.024 seconds

A Study on Document Retrieval of Web Using Relevance Feedback (적합성 피드백을 이용한 웹 문서검색에 관한 연구)

  • 김영천;이성주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.597-604
    • /
    • 2001
  • In conventional boolean retrieval systems, document ranking is not supported and similarity coefficients cannot be computed between queries and documents. The MMM, Paice and P-norm models have been proposed in the past to support the ranking facility for boolean retrieval systems. They have common properties of interpreting boolean operators softly. In this paper we propose a new soft evaluation method for Information retrieval using query splitting relevance feedback model. We also show through performance comparison that query splitting relevance feedback(QSRF) is more efficient and effective than MMM, Paice and P-norm.

  • PDF

A Study on Information Retrieval Using Query Splitting Relevance Feedback (질의분해 적합성 피드백을 이용한 정보검색에 관한 연구)

  • 김영천;박병권;이성주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.252-257
    • /
    • 2001
  • In conventional boolean retrieval systems, document ranking is not supported and similarity coefficients cannot be computed between queries and documents. The MMM, Paice and P-norm models have been proposed in the past to support the ranking facility for boolean retrieval systems. They have common properties of interpreting boolean operators softly. In this paper we propose a new soft evaluation method for Information retrieval using query splitting relevance feedback model. We also show through performance comparison that query splitting relevance feedback(QSRF) is more efficient and effective than MMM, Paice and P-norm.

  • PDF

Content-based Image Retrieval System (내용기반 영상검색 시스템)

  • Yoo, Hun-Woo;Jang, Dong-Sik;Jung, She-Hwan;Park, Jin-Hyung;Song, Kwang-Seop
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.363-375
    • /
    • 2000
  • In this paper we propose a content-based image retrieval method that can search large image databases efficiently by color, texture, and shape content. Quantized RGB histograms and the dominant triple (hue, saturation, and value), which are extracted from quantized HSV joint histogram in the local image region, are used for representing global/local color information in the image. Entropy and maximum entry from co-occurrence matrices are used for texture information and edge angle histogram is used for representing shape information. Relevance feedback approach, which has coupled proposed features, is used for obtaining better retrieval accuracy. Simulation results illustrate the above method provides 77.5 percent precision rate without relevance feedback and increased precision rate using relevance feedback for overall queries. We also present a new indexing method that supports fast retrieval in large image databases. Tree structures constructed by k-means algorithm, along with the idea of triangle inequality, eliminate candidate images for similarity calculation between query image and each database image. We find that the proposed method reduces calculation up to average 92.9 percent of the images from direct comparison.

  • PDF

A Image Retrieval Model Based on Weighted Visual Features Determined by Relevance Feedback (적합성 피드백을 통해 결정된 가중치를 갖는 시각적 특성에 기반을 둔 이미지 검색 모델)

  • Song, Ji-Young;Kim, Woo-Cheol;Kim, Seung-Woo;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.3
    • /
    • pp.193-205
    • /
    • 2007
  • Increasing amount of digital images requires more accurate and faster way of image retrieval. So far, image retrieval method includes content-based retrieval and keyword based retrieval, the former utilizing visual features such as color and brightness and the latter utilizing keywords which describe the image. However, the effectiveness of these methods as to providing the exact images the user wanted has been under question. Hence, many researchers have been working on relevance feedback, a process in which responses from the user are given as a feedback during the retrieval session in order to define user’s need and provide improved result. Yet, the methods which have employed relevance feedback also have drawbacks since several feedbacks are necessary to have appropriate result and the feedback information can not be reused. In this paper, a novel retrieval model has been proposed which annotates an image with a keyword and modifies the confidence level of the keyword in response to the user’s feedback. In the proposed model, not only the images which have received positive feedback but also the other images with the visual features similar to the features used to distinguish the positive image are subjected to confidence modification. This enables modifying large amount of images with only a few feedbacks ultimately leading to faster and more accurate retrieval result. An experiment has been performed to verify the effectiveness of the proposed model and the result has demonstrated rapid increase in recall and precision while receiving the same number of feedbacks.

A probabilistic information retrieval model by document ranking using term dependencies (용어간 종속성을 이용한 문서 순위 매기기에 의한 확률적 정보 검색)

  • You, Hyun-Jo;Lee, Jung-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.5
    • /
    • pp.763-782
    • /
    • 2019
  • This paper proposes a probabilistic document ranking model incorporating term dependencies. Document ranking is a fundamental information retrieval task. The task is to sort documents in a collection according to the relevance to the user query (Qin et al., Information Retrieval Journal, 13, 346-374, 2010). A probabilistic model is a model for computing the conditional probability of the relevance of each document given query. Most of the widely used models assume the term independence because it is challenging to compute the joint probabilities of multiple terms. Words in natural language texts are obviously highly correlated. In this paper, we assume a multinomial distribution model to calculate the relevance probability of a document by considering the dependency structure of words, and propose an information retrieval model to rank a document by estimating the probability with the maximum entropy method. The results of the ranking simulation experiment in various multinomial situations show better retrieval results than a model that assumes the independence of words. The results of document ranking experiments using real-world datasets LETOR OHSUMED also show better retrieval results.

Building a text collection for Urdu information retrieval

  • Rasheed, Imran;Banka, Haider;Khan, Hamaid M.
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.856-868
    • /
    • 2021
  • Urdu is a widely spoken language in the Indian subcontinent with over 300 million speakers worldwide. However, linguistic advancements in Urdu are rare compared to those in other European and Asian languages. Therefore, by following Text Retrieval Conference standards, we attempted to construct an extensive text collection of 85 304 documents from diverse categories covering over 52 topics with relevance judgment sets at 100 pool depth. We also present several applications to demonstrate the effectiveness of our collection. Although this collection is primarily intended for text retrieval, it can also be used for named entity recognition, text summarization, and other linguistic applications with suitable modifications. Ours is the most extensive existing collection for the Urdu language, and it will be freely available for future research and academic education.

Image Retrieval using Distribution Block Signature of Main Colors' Set and Performance Boosting via Relevance feedback (주요 색상의 분포 블록기호를 이용한 영상검색과 유사도 피드백을 통한 이미지 검색)

  • 박한수;유헌우;장동식
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.126-136
    • /
    • 2004
  • This paper proposes a new content-based image retrieval algorithm using color-spatial information. For the purpose, the paper suggests two kinds of indexing key to prune away irrelevant images to a given query image; MCS(Main Colors' Set), which is related with color information and DBS (Distribution Block Signature), which is related with spatial information. After successively applying these filters to a database, we could get a small amount of high potential candidates that are somewhat similar to the query image. Then we would make use of new QM(Quad modeling) and relevance feedback mechanism to obtain more accurate retrieval. It would enhance the retrieval effectiveness by dynamically modulating the weights of color-spatial information. Experiments show that the proposed algorithm can apply successfully image retrieval applications.

Relevance Feedback based on Medicine Ontology for Retrieval Performance Improvement (검색 성능 향상을 위한 약품 온톨로지 기반 연관 피드백)

  • Lim, Soo-Yeon
    • Journal of the Korean Society for information Management
    • /
    • v.22 no.2 s.56
    • /
    • pp.41-56
    • /
    • 2005
  • For the purpose of extending the Web that is able to understand and process information by machine, Semantic Web shared knowledge in the ontology form. For exquisite query processing, this paper proposes a method to use semantic relations in the ontology as relevance feedback information to query expansion. We made experiment on pharmacy domain. And in order to verify the effectiveness of the semantic relation in the ontology, we compared a keyword based document retrieval system that gives weights by using the frequency information compared with an ontology based document retrieval system that uses relevant information existed in the ontology to a relevant feedback. From the evaluation of the retrieval performance. we knew that search engine used the concepts and relations in ontology for improving precision effectively. Also it used them for the basis of the inference for improvement the retrieval performance.

Optimization of Condensation Ratio for Fast Image Retrieval (영상 검색의 속도 향상을 위한 차원 축소율 최적화)

  • 이세한;이주호;조정원;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1515-1518
    • /
    • 2003
  • This paper suggests the condensed two-stage retrieval method for fast image retrieval in the content-based image retrieval system, and proves the validity of the performance. The condensed two-stage retrieval method reduces the overall response time remarkably while it maintains relevance with the conventional exhaustive search method. It is explained by properties of the Cauchy-Schwartz inequality. In experimental result, it turns out that there is an optimal value of condensation ratio which minimizes the overall response time. We analyze the optimal condensation ratio by modeling a similarity computation time mathematically.

  • PDF

Relevance Feedback using Region-of-interest in Retrieval of Satellite Images (위성영상 검색에서 사용자 관심영역을 이용한 적합성 피드백)

  • Kim, Sung-Jin;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.434-445
    • /
    • 2009
  • Content-based image retrieval(CBIR) is the retrieval technique which uses the contents of images. However, in contrast to text data, multimedia data are ambiguous and there is a big difference between system's low-level representation and human's high-level concept. So it doesn't always mean that near points in the vector space are similar to user. We call this the semantic-gap problem. Due to this problem, performance of image retrieval is not good. To solve this problem, the relevance feedback(RF) which uses user's feedback information is used. But existing RF doesn't consider user's region-of-interest(ROI), and therefore, irrelevant regions are used in computing new query points. Because the system doesn't know user's ROI, RF is proceeded in the image-level. We propose a new ROI RF method which guides a user to select ROI from relevant images for the retrieval of complex satellite image, and this improves the accuracy of the image retrieval by computing more accurate query points in this paper. Also we propose a pruning technique which improves the accuracy of the image retrieval by using images not selected by the user in this paper. Experiments show the efficiency of the proposed ROI RF and the pruning technique.