• Title/Summary/Keyword: Response history analysis

Search Result 802, Processing Time 0.023 seconds

Applicability of Beam Model among Earthquake Response Analysis Models of Liquid-Storage Tank (액체저장탱크의 지진응답해석 모델 중 빔 모델의 적용성)

  • Jin, Byeong-Moo;Jeon, Se-Jin;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.696-699
    • /
    • 2004
  • Generally, the time history analysis among seismic response analyses of a structure needs more times than static analysis. Therefore the mechanical model of a structure has been used as a simple lumped parameter model in time history analysis. For the most cases, the simple mechanical model shows the similar results to that of detailed finite element model. so it is reasonable to use the simple mode] in preliminary analysis. In seismic design of liquid storage tank, such as LNG storage tank, the lumped parameter mode] also is being used in preliminary analysis, however sometimes shows the differences to the results of detailed finite element model. Therefore in this study, the dynamic characteristics between lumped parameter model and detailed finite model is compared for the variables such as height/diameter of liquid-storage tank and thickness of wall, then the applicability of beam mode] to the seismic response analysis are evaluated for some liquid storage tanks.

  • PDF

Seismic Perfomance Evaluation of Wind-Designed Steel Highrise Buildings Based on Linear Dynamic Analysis (내풍설계된 철골조 초고층건물의 선형동적해석에 의한 내진성능평가)

  • Lee, Cheol-Ho;Kim, Seon-Woong
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.177-184
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall building, the probable structural impact of the design basis earthquake or the maximum credible earthquake on the selected structural system should be considered at least in finalizing the design. In this study, by using response spectrum analysis and time history analysis method, seismic performance evaluation was conducted for wind-designed concentrically braced steel highrise buildings. Input ensemble was normalized to be compatible with expected peak ground acceleration. The analysis results showed that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seismic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. The time history analysis tended to significantly underestimated the seismic response as compared to response spectrum analysis. Further detailed studies regarding selection and scaling scheme of input ground motions is needed.

  • PDF

An evaluation of the seismic response of symmetric steel space buildings

  • Yon, Burak
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.399-412
    • /
    • 2016
  • This paper evaluates the seismic response of three dimensional steel space buildings using the spread plastic hinge approach. A numerical study was carried out in which a sample steel space building was selected for pushover analysis and incremental nonlinear dynamic time history analysis. For the nonlinear analysis, three earthquake acceleration records were selected to ensure compatibility with the design spectrum defined in the Turkish Earthquake Code. The interstorey drift, capacity curve, maximum responses and dynamic pushover curves of the building were obtained. The analysis results were compared and good correlation was obtained between the idealized dynamic analyses envelopes with and static pushover curves for the selected building. As a result to more accurately account response of steel buildings, dynamic pushover envelopes can be obtained and compared with static pushover curve of the building.

Dynamic response of a fuel assembly for a KSNP design earthquake

  • Jhung, Myung Jo;Choi, Youngin;Oh, Changsik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3353-3360
    • /
    • 2022
  • Using data from the design earthquake of the Korean standard nuclear power plant, seismic analyses of a fuel assembly are conducted in this study. The modal characteristics are used to develop an input deck for the seismic analysis. With a time history analysis, the responses of the fuel assembly in the event of an earthquake are obtained. In particular, the displacement, velocity, and acceleration responses at the center location of the fuel assembly are obtained in the time domain, with these outcomes then used for a detailed structural analysis of the fuel rods in the ensuing analyses. The response spectra are also generated to determine the response characteristics in the frequency domain. The structural integrity of the fuel assembly can be ensured through this type of time history analysis considering the input excitations of various earthquakes considered in the design.

Comparative Evaluation of Nonlinear Seismic Responses of Bridge Structures Using Different Analysis Technique (해석방법에 따른 교량 구조물의 비선형지진응답 비교연구)

  • Kwon, Kyong-Il;Joe, Yang-Hee;Kim, Jae-Suk
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.396-404
    • /
    • 2005
  • Nonlinear responses of structures may be obtained through three different methods. They are time-history analysis techniques, response spectrum method, and R-factor method. The nonlinear response spectrum method is frequently used in the practice, because the time history analysis method is time-consuming and complicated. There are two different approaches in obtaining the nonlinear response spectrum, which results in "constant displacement ductility spectra" and "constant damage spectra", respectively. The nonlinear response spectra of the various time-histories had been computed and the results were comparatively evaluated in this study. The study results showed that the existing constant displacement ductility spectra can induce unconservative design especially for the structures on soft soil base. This unconservatism can be removed by using the newly proposed constant damage spectra.

  • PDF

Comparing of the effects of scaled and real earthquake records on structural response

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.375-392
    • /
    • 2014
  • Time history analyses have been preferred commonly in earthquake engineering area to determine earthquake performances of structures in recent years. Advances in computer technology and structural analysis have led to common usage of time history analyses. Eurocode 8 allows the use of real earthquake records as an input for linear and nonlinear time history analyses of structures. However, real earthquake records with the desired characteristics sometimes may not be found, for example depending on soil classes, in this case artificial and synthetic earthquake records can be used for seismic analyses rather than real records. Selected earthquake records should be scaled to a code design spectrum to reduce record to record variability in structural responses of considered structures. So, scaling of earthquake records is one of the most important procedures of time history analyses. In this paper, four real earthquake records are scaled to Eurocode 8 design spectrums by using SESCAP (Selection and Scaling Program) based on time domain scaling method and developed by using MATLAB, GUI software, and then scaled and real earthquake records are used for linear time history analyses of a six-storied building. This building is modeled as spatial by SAP2000 software. The objectives of this study are to put basic procedures and criteria of selecting and scaling earthquake records in a nutshell, and to compare the effects of scaled earthquake records on structural response with the effects of real earthquake records on structural response in terms of record to record variability of structural response. Seismic analysis results of building show that record to record variability of structural response caused by scaled earthquake records are fewer than ones caused by real earthquake records.

Dynamic response of layered hyperbolic cooling tower considering the effects of support inclinations

  • Asadzadeh, Esmaeil;Alam, Mehtab;Asadzadeh, Sahebali
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.797-816
    • /
    • 2014
  • Cooling tower is analyzed as an assembly of layered nonlinear shell elements. Geometric representation of the shell is enabled through layered nonlinear shell elements to define the different layers of reinforcements and concrete by considering the material nonlinearity of each layer for the cooling tower shell. Modal analysis using Ritz vector analysis and nonlinear time history analysis by direct integration method have been carried out to study the effects of the inclination of the supporting columns of the cooling tower shell on its dynamic characteristics. The cooling tower is supported by I-type columns and ${\Lambda}$-type columns supports having the different inclination angles. Relevant comparisons of the dynamic response of the structural system at the base level (at the junction of the column and shell), throat level and at the top of the tower have been made. Dynamic response of the cooling tower is found to be significantly sensitive to the change of the inclination of the supporting columns. It is also found that the stiffness of the structure system increases with increase in inclination angle of the supporting columns, resulting in decrease of the period of the structural system. The participation of the stiffness of the tower in structural response of the cooling tower is fund to be dependent of the change in the inclination angle and even in the types of the supporting columns.

Time-History Analysis on Structure Dynamic Response for the SDOF System of Ground Vibration by the Newmark $\beta$ method (Newmark $\beta$ 방법에 의한 지반진동의 단자유도계 구조물 동적응답 시간이력 해석)

  • Kim, Jong-In;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.292-298
    • /
    • 2010
  • The purpose of this study is to evaluate an effect of ground vibration caused by blasting on the concrete brick structure. For the purpose, dynamic response time-history of the structure assumed single degree of freedom (SDOF) system and vibration time-history directly measured from the structure were examined, using Newmark $\beta$ method based on data measured at ground. The time-history was interpreted from the measured data of ground and structure in single hole blasting. Vibration magnitude between ground vibration and structure in single hole blasting and 20 ms interval blasting was about three times and was shown larger vibration on the structure. By time-history analysis of structure dynamic response, the value was almost the same one with the data measured from the structure. It indicates that the vibration characteristics of structures may be predicted on the basis of the ground vibration data measured from the sub-ground of structure.

KBC Seismic Design Force for Nonstructural Element (KBC 비구조요소 내진설계 하중)

  • Kim, Dae-Kon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.77-84
    • /
    • 2014
  • Simple 3, 10, and 30-story buildings with a nonstructural element which is located at roof or near the middle of the building height are selected. Based on 2009 Korean Building Code, the seismic design force applied at the nonstructural element is evaluated. Response spectrum analysis is conducted with the design response acceleration spectrum of 2009 Korean Building Code and the analytical response is compared with the seismic design force from the Code. Furthermore, an artificial earthquake based on Korean design response acceleration spectrum and the 50% intensity of El Centro earthquake, which can be considered as the maximum future earthquake possibly occurring in Korea, are selected to conduct time history analysis. When the period of the nonstructural element is shorter than 0.06 second or longer than that of the 1st period of each building, the Code equations of seismic design force for nonstructural element seems to be appropriate. However, the period of the nonstructural element is close to the one of the building's higher mode periods including the 1st period, seismic force of the nonstructural element might exceed the Code specified seismic design force.

Earthquake Response Analysis for Seismic Isolation System of Single Layer Lattice Domes With 300m Span (300m 단층 래티스 돔의 면진 장치에 대한 지진 반응 해석)

  • Park, Kang-Geun;Chung, Mi-Ja;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.105-116
    • /
    • 2018
  • The objective of this study is to investigate the response reducing effect of a seismic isolation system installed between 300m dome and supports under both horizontal and vertical seismic ground motion. The time history analysis is performed to investigate the dynamic behavior of single layer lattice domes with and without a lead rubber bearing seismic isolation system. In order to ensure the seismic performance of lattice domes against strong earthquakes, it is important to investigate the mechanical characteristics of dynamic response. Horizontal and vertical seismic ground motions cause a large asymmetric vertical response of large span domes. One of the most effective methods to reduce the dynamic response is to install a seismic isolation system for observing seismic ground motion at the base of the dome. This paper discusses the dynamic response characteristics of 300m single layer lattice domes supported on a lead rubber seismic isolation device under horizontal and vertical seismic ground motions.