• 제목/요약/키워드: Response function

검색결과 4,819건 처리시간 0.028초

Volterra급수로 나타낸 비선형시스템 주파수응답함수의 수렴특성 (Convergence Characteristics of the Frequency Response Functions of Non-Linear Systems Expressed in Terms of the Volterra Series)

  • 이건명
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1901-1906
    • /
    • 1995
  • The frequency response functions of systems incorporating a non-linear cubic stiffness subject to sinusoidal excitation are derived using the Volterra series and the convergence characteristics investigated. It is shown that the series representation of the frequency response functions converges only when the sinewave input amplitude is within a certain range. Within the range of convergence the frequency response function based on the Volterra series approaches the analytical one as more higher order frequency response function terms are included. Proposed is a criterion for the studies systems to predict approximately the range of sinewave input amplitude for which the series representation of the frequency response functions converges.

An improved response surface method for reliability analysis of structures

  • Basaga, Hasan Basri;Bayraktar, Alemdar;Kaymaz, Irfan
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.175-189
    • /
    • 2012
  • This paper presents an algorithm for structural reliability with the response surface method. For this aim, an approach with three stages is proposed named as improved response surface method. In the algorithm, firstly, a quadratic approximate function is formed and design point is determined with First Order Reliability Method. Secondly, a point close to the exact limit state function is searched using the design point. Lastly, vector projected method is used to generate the sample points and Second Order Reliability Method is performed to obtain reliability index and probability of failure. Five numerical examples are selected to illustrate the proposed algorithm. The limit state functions of three examples (cantilever beam, highly nonlinear limit state function and dynamic response of an oscillator) are defined explicitly and the others (frame and truss structures) are defined implicitly. ANSYS finite element program is utilized to obtain the response of the structures which are needed in the reliability analysis of implicit limit state functions. The results (reliability index, probability of failure and limit state function evaluations) obtained from the improved response surface are compared with those of Monte Carlo Simulation, First Order Reliability Method, Second Order Reliability Method and Classical Response Surface Method. According to the results, proposed algorithm gives better results for both reliability index and limit state function evaluations.

Capabilities of stochastic response surface method and response surface method in reliability analysis

  • Jiang, Shui-Hua;Li, Dian-Qing;Zhou, Chuang-Bing;Zhang, Li-Min
    • Structural Engineering and Mechanics
    • /
    • 제49권1호
    • /
    • pp.111-128
    • /
    • 2014
  • The stochastic response surface method (SRSM) and the response surface method (RSM) are often used for structural reliability analysis, especially for reliability problems with implicit performance functions. This paper aims to compare these two methods in terms of fitting the performance function, accuracy and efficiency in estimating probability of failure as well as statistical moments of system output response. The computational procedures of two response surface methods are briefly introduced first. Then their capabilities are demonstrated and compared in detail through two examples. The results indicate that the probability of failure mainly reflects the accuracy of the response surface function (RSF) fitting the performance function in the vicinity of the design point, while the statistical moments of system output response reflect the accuracy of the RSF fitting the performance function in the entire space. In addition, the performance function can be well fitted by the SRSM with an optimal order polynomial chaos expansion both in the entire physical and in the independent standard normal spaces. However, it can be only well fitted by the RSM in the vicinity of the design point. For reliability problems involving random variables with approximate normal distributions, such as normal, lognormal, and Gumbel Max distributions, both the probability of failure and statistical moments of system output response can be accurately estimated by the SRSM, whereas the RSM can only produce the probability of failure with a reasonable accuracy.

진동수응답함수 측정에 따른 펌프 가진력 산정 (Estimation of Pump Induced Vibration Force by Frequency Response Function)

    • 한국지진공학회논문집
    • /
    • 제3권1호
    • /
    • pp.103-112
    • /
    • 1999
  • 본 연구는 두 지점간의 진동수 응답함수를 이용하여 시간 및 진동수 영역에서의 원심펌프(20Hp. 50Hp) 가진력을 추정하기 위한 것이다. 진동수 응답함수는 실수부와 허수부에 대한 신호정보를 가지고 있으며 응답함수 역시 실수부와 허수부에 대한 신호정보를 가지고 있다 따라서 이들 진동수 응답함수 및 응답함숴의 복소수 계산으로부터 가진력을 실험적으로 구하였으며 이론적인 방법에 의하여 구한 가진력과 실험적으로 구한 값을 비교함으로서 펌프에 의한 주진동수 성분의 크기는 펌프 및 모터중량의 10-25% 정도가 됨을 제시하였다. 가진력 산정을 위한 시간영역에서의 불평형질량의 크기는 펌프 및 모터중량의 약 30-60%임을 알수 있었다 한편 펌프회전에 의한 진동은 주진동수 이외에도 주진동수의 2-3배의 크기를 갖는 성분이 있음을 알 수 있었으며 대상 콘크리트 슬래브의 고유진동수와의 가진진도수비를 달리함에 따라 정확한 진동전달률을 조절하는데 활용할 수 있다.

  • PDF

공정변수의 변동을 고려한 호감도 함수를 통한 다중반응표면 최적화 (Multiresponse Optimization Through A New Desirability Function Considering Process Parameter Fluctuation)

  • 권준범;이종석;이상호;전치혁;김광재
    • 한국경영과학회지
    • /
    • 제30권1호
    • /
    • pp.95-104
    • /
    • 2005
  • A desirability function approach to a multiresponse problem is proposed considering process parameter fluctuation which may amplify the variance of response. It is called POE (propagation of error), which is defined as the standard deviation of the transmitted variability in the response as a function of process parameters. In order to obtain more robust process parameter setting, a new desirability function is proposed by considering POE as well as distance-to-target of response and response variance. The proposed method is illustrated using a rubber product case in Ribeiro et al. (2000).

신생아에서의 부신기능 평가와 질환 (Evaluation of function and disorders of the adrenal gland in neonates)

  • 황일태
    • Clinical and Experimental Pediatrics
    • /
    • 제50권3호
    • /
    • pp.236-240
    • /
    • 2007
  • Majority of sick full term newborns have adequate adrenal cortical function in response to stress. Acutely ill neonates with a basal cortisol level less than $15{\mu}g/dL$ (414 nmol/L) suggest adrenal insufficiency and require function testing of adrenal function. In premature infant, immaturity of hypothalamic-pituitary adrenal axis (HPA axis), may limit the ability to increase cortisol production in response to stress. The response to low dose ACTH and CRH appears to be useful as an additional test of adrenal function. CRH stimulation has been used increasingly in neonates. The ACTH and CRH stimulated cortisol response of more than $17{\mu}g/dL$ (469 nmol/L) indicates a normal response.

기상 영상기의 적외선 채널 분광 응답 규격에 대한 분석 (Analysis of Spectral Response Specification for the Infrared Channels of Meteorological Imager)

  • 조영민
    • 항공우주기술
    • /
    • 제6권2호
    • /
    • pp.104-110
    • /
    • 2007
  • GOES 계열 정지궤도 위성 기상 영상기의 적외선 채널에 사용되는 분광 응답 성능 규격을 분석하였다. 성능 규격 범위 내에서 분광 응답 함수 모양 변화에 따른 유효 중심 파장(Effective Wavelength)과 유효 입력광 Radiance (Effective Input Radiance)의 변동 특성을 분석함으로써 분광 응답 규격 해석 방법을 제시하였다. 구체적 분석 방법으로서 먼저 분광 응답 규격 범위 내에서 중앙 대칭 분광 응답 함수와 함께 최악 경우에 해당하는 4 가지 대표적인 분광 응답 함수들을 선택하고, 각 분광 응답 함수에 대해 적외선 채널의 유효 중심 파장과 유효 입력광 Radiance를 구하였다. 결론으로서 성능 규격의 범위 내에서 허용되는 유효 중심 파장과 유효 입력광 Radiance의 최대 변동 범위를 제시하였다.

  • PDF

이산계와 탄성 지지보의 동응답 및 진동 인텐시티 저감을 위한 목적함수 해석 (Analyses of the Cost function for the Reductions of the Dynamic Response and the Vibrational Intensity of a Discrete System and Its Elastic Supporting Beam)

  • 김기만;최성대
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.83-91
    • /
    • 2010
  • In this paper, the feasibility of the cost function having two control factors were discussed in compared to two others which has one different control factor respectively. As of the control factors, the dynamic response of a discrete system and the vibrational intensity at the reference point which is the connecting point of a discrete system to a flexible beam were controlled actively by the control force obtained from the minimization of the cost function. The method of feedforward control was employed for the control strategy. The reduction levels of the dynamic response of a discrete system and the vibrational intensity at a reference point, and also the input power induced by the control force were evaluated numerically in cases of the three different cost functions. In comparison with the results obtained from the cost functions of one control factor, which is the dynamic response or the vibrational intensity, in most cases of the cost function of two control factors the better or similar results were obtained. As a conclusion, it is surely noted that both the dynamic response and the vibrational intensity of the vibrating system be controlled up to the expected level by using the single cost function having two control factors.

다중반응표면 최적화를 위한 단변량 손실함수법: 대화식 절차 기반의 가중치 결정 (A Univariate Loss Function Approach to Multiple Response Surface Optimization: An Interactive Procedure-Based Weight Determination)

  • 정인준
    • 지식경영연구
    • /
    • 제21권1호
    • /
    • pp.27-40
    • /
    • 2020
  • Response surface methodology (RSM) empirically studies the relationship between a response variable and input variables in the product or process development phase. The ultimate goal of RSM is to find an optimal condition of the input variables that optimizes (maximizes or minimizes) the response variable. RSM can be seen as a knowledge management tool in terms of creating and utilizing data, information, and knowledge about a product production and service operations. In the field of product or process development, most real-world problems often involve a simultaneous consideration of multiple response variables. This is called a multiple response surface (MRS) problem. Various approaches have been proposed for MRS optimization, which can be classified into loss function approach, priority-based approach, desirability function approach, process capability approach, and probability-based approach. In particular, the loss function approach is divided into univariate and multivariate approaches at large. This paper focuses on the univariate approach. The univariate approach first obtains the mean square error (MSE) for individual response variables. Then, it aggregates the MSE's into a single objective function. It is common to employ the weighted sum or the Tchebycheff metric for aggregation. Finally, it finds an optimal condition of the input variables that minimizes the objective function. When aggregating, the relative weights on the MSE's should be taken into account. However, there are few studies on how to determine the weights systematically. In this study, we propose an interactive procedure to determine the weights through considering a decision maker's preference. The proposed method is illustrated by the 'colloidal gas aphrons' problem, which is a typical MRS problem. We also discuss the extension of the proposed method to the weighted MSE (WMSE).

임펄스응답 데이타의 펄스전달함수의 근사 (Approximation of Pulse Transfer Function of Impulse Response Data)

  • 이동철;배종일;정형환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.683-685
    • /
    • 1999
  • As a method of obtaining pulse transfer function. transfer function of discrete-time from input-output data, there are method of obtaining unknown parameter of pulse transfer function from estimated impulse response before(1-3). There is no need to approximate to several meanings because of not being established algebraical relations between impulse response for estimation error and parameter of transfer function exactly. In this paper, I inquire the method[4] of obtaining the optimal pulse transfer function as a meaning of Hankel norm approximation from impulse response data and examine estimated property as computer simulation from this method.

  • PDF