• Title/Summary/Keyword: Response Surface Model (RSM)

Search Result 368, Processing Time 0.028 seconds

A Numerical Study on the Geometry Optimization of Internal Flow Passage in the Common-rail Diesel Injector for Improving Injection Performance (커먼레일 디젤인젝터의 분사성능 개선을 위한 내부유로형상 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jeong, Soojin;Lee, Sangin;Kim, Taehun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2014
  • The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.

Effect of Mild Heat Treatments Prior to Air Dehydration of Dried Onions Quality (열풍건조 전 순한 열처리가 건조 양파의 품질에 미치는 영향)

  • Kim, Myung-Hwan;Kim, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.539-542
    • /
    • 1990
  • The effects of immersion temperature $(20,\;40\;and\;60^{\circ}C)$ and immersion times (6. 12 and 18 min) in a distilled water prior to air dehydration upon the browning reaction and pyruvic acid content of air dried onions to a 4.071 moisture content (wet basis) were analyzed by a response surface methodology (RSM). Those values were also predicted by using a second degree polynomial regression model. Immersion temperature had more influence to browning reaction and pyruvic acid content than immersion time in these experimental ranges. The processing conditions to minimize the browning reaction of dried onions at $50^{\circ}C$ of air temperature (O.D.=0.071) were $60^{\circ}C$ of immersion temperature and 18 min of immersion time compared to control (O.D.=0.168) of air dehydration at $50^{\circ}C$ Pyruvic acid contents of dried onions at $50^{\circ}C$ of air temperature were maximized $(39.85{\mu}mole/g\;onion\;solid)$ at $60^{\circ}C$ of immersion temperature and 12 min of immersion time compared to control $(24.08{\mu}mole/g\;onion\;solid)$ of air dehydration at $50^{\circ}C$.

  • PDF

Optimization of Roasting Process for Preparation of Water Extracts from Job's tears (Coicis lachryma-jobi) (고품질 율무추출액 제조를 위한 볶음공정의 최적화)

  • Chung Hun-Sik;Youn Kwang-Sup
    • Food Science and Preservation
    • /
    • v.13 no.2
    • /
    • pp.119-124
    • /
    • 2006
  • This study was conducted to optimize roasting process of Job's tears for utilization as food Optimal condition for masting was investigated with changes in temperature and time by response surface methodology. The qualities of water extract such as browning degree, polyphenol and DPPH radical scavenging ability were affected more by roasting temperature than time. The values increased with temperature and time proportionally. The response variables were more significant with temperature than time and the established polynomial model was suitable (P>0.05) model by Lack-of-Fit analysis. Optimal roasting conditions with the limit of $0.2{\sim}0.3$ browning degree, $2.0{\sim}2.5{\mu}g/mL$ polyphenol, $30{\sim}40%$ scavenging ability and $0{\sim}100$ hue angle were $215^{\circ}C$ and 32 min.

Statistically Designed Enzymatic Hydrolysis for Optimized Production of Icariside II as a Novel Melanogenesis Inhibitor

  • Park, Jun-Seong;Park, Hye-Yoon;Rho, Ho-Sik;Ahn, Soo-Mi;Kim, Duck-Hee;Chang, Ih-Seop
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.110-117
    • /
    • 2008
  • Three kinds of prenylated flavonols, icariside I, icariside II, and icaritin, were isolated from an icariin hydrolysate and their effects on melanogenesis evaluated based on mushroom tyrosinase inhibition and quantifying the melanin contents in melanocytes. Although none of the compounds had an effect on tyrosinase activity, icariside II and icaritin both effectively inhibited the melanin contents with an $IC_{50}$ of 10.53 and $11.13{\mu}M$, respectively. Whereas icariside II was obtained from a reaction with ${\beta}$-glucosidase and cellulase, the icariin was not completely converted into icariside II. Thus, for the high-purity production of icariside II, the reaction was optimized using the response surface methodology, where an enzyme concentration of 5.0mg/ml, pH 7, $37.5^{\circ}C$, and 8 h reaction time were selected as the central conditions for the central composite design (CCD) for the enzymatic hydrolysis of icariin into icariside II using cellulase. Empirical models were developed to describe the relationships between the operating factors and the response (icariside II yield). A statistical analysis indicated that all four factors had a significant effect (p<0.01) on the icariside II production. The coefficient of determination $(R^2)$ was good for the model (0.9853), and the optimum production conditions for icariside II was an enzyme concentration of 7.5mg/ml, pH 5, $50^{\circ}C$, and 12 h reaction time. A good agreement between the predicted and experimental data under the designed optimal conditions confirmed the usefulness of the model. A laboratory pilot scale was also successful.

The Quality Characteristics of Cookies Prepared with Agaricus blazei Murill (아가리쿠스 버섯 가루를 첨가한 쿠키의 최적화 연구)

  • Lee, Heejeong;Jeong, Hee Sun;Joo, Nami
    • Korean journal of food and cookery science
    • /
    • v.31 no.2
    • /
    • pp.175-184
    • /
    • 2015
  • The purpose of this study was to determine the optimal mixing ratio of Agaricus blazei Murill powder and butter in the preparation of cookies. The experimental design utilized herein was based on central composite design for response surface methodology, which included 10 experimental points, including 2 replicates for Agaricus blazei Murill and butter. The physical, mechanical, and sensory properties of the test were measured, and these values were applied to the mathematical models. A canonical form and perturbation plot showed the influence of each ingredient on the final mixed product. The spread ratio increased significantly with an increase in Agaricus blazei Murill powder and butter (p<0.05). The response surface methodology was applied to evaluate the effect of Agaricus blazei Murill powder and butter on cookie moisture and color (L, a) (p<0.001). Sensory evaluation showed significant values for color (p<0.05), flavor (p<0.05), texture (p<0.05) and overall quality (p<0.01) in the predicted model. The optimum formulation by numerical and graphical methods was calculated as follows: Agaricus blazei Murill powder 3.63 g, butter 55.37 g.

Bioprocess Development for Production of Alkaline Protease by Bacillus pseudofirmus Mn6 Through Statistical Experimental Designs

  • Abdel-Fattah, Y.R.;El-Enshasy, H.A.;Soliman, N.A.;El-Gendi, H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.4
    • /
    • pp.378-386
    • /
    • 2009
  • A sequential optimization strategy, based on statistical experimental designs, is employed to enhance the production of alkaline protease by a Bacillus pseudofirmus local isolate. To screen the bioprocess parameters significantly influencing the alkaline protease activity, a 2-level Plackett-Burman design was applied. Among 15 variables tested, the pH, peptone, and incubation time were selected based on their high positive significant effect on the protease activity. A near-optimum medium formulation was then obtained that increased the protease yield by more than 5-fold. Thereafter, the response surface methodology(RSM) was adopted to acquire the best process conditions among the selected variables, where a 3-level Box-Behnken design was utilized to create a polynomial quadratic model correlating the relationship between the three variables and the protease activity. The optimal combination of the major medium constituents for alkaline protease production, evaluated using the nonlinear optimization algorithm of EXCEL-Solver, was as follows: pH of 9.5, 2% peptone, and incubation time of 60 h. The predicted optimum alkaline protease activity was 3,213 U/ml/min, which was 6.4 times the activity with the basal medium.

Desorption of Food Related Phenolic Acids from Charcoal in Single Solute Model System

  • Lee, Won-Young;Park, Yong-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.4
    • /
    • pp.316-320
    • /
    • 1997
  • Phenolic acids are regarded as harmful materials in food and environment science but recently, as useful materials, and thus adsorption is recommended as an effective separation technique to recover or remove phenolic acids from diluted solution. If the adsorbed phenolic compounds were useful materials, the materials should be recovered through desorption. Desorption using supercritical carbon dioxide(SC-$CO_2$) was tried to separate food-borne phenolic acids from charcoal in single solute system. In the comparisons of desorption amounts, gallic acid had the lowest lolubiligy to SC-$CO_2$. Gallic acid has more hydroxy functional groups than the other phenolic acids, which was immiscible with nonpolar SC-$CO_2$. Ferulic acid was yielded more than p-coumaric acid, because ferulic acid had much bigger molecular weight, which was affected more by van der Waas force. It was found that the most affecting factor on desorption amounts was the solubility of phenolic acids to SC-$CO_2$. The second affecting factor was van der Waals force. Response surface methodology(RSM) was conducted to read the trend of desorption. Increasing density of SC-$CO_2$ raised solubility of phenolic acids.

  • PDF

NUMERICAL STUDY ON SYNTHETIC-JET-BASED FLOW SUPPLYING DEVICE (합성제트 기반의 유량 공급 장치에 대한 수치적 연구)

  • Park, M.;Lee, J.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.77-83
    • /
    • 2015
  • Flow characteristics of synthetic jet based flow supplying devices have been computationally investigated for different device shapes. Jet momentum was produced by the volume change of a cavity by two piezoelectric-driven diaphragms. The devices have additional flow path compared with the original synthetic jet actuator, and these flow path changes the flow characteristics of synthetic jet actuator. Four non-dimensional parameters, which were functions of the shapes of the additional flow path, were considered as the most critical parameters in jet performance. Comparative studies were conducted to compare volume flow rate and jet velocity. Computed results were solved by 2-D incompressible Navier-Stokes solver with k-w SST turbulence model. Detailed computations revealed that the additional flow path diminishes suction strength of the synthetic jet actuator. In addition, the cross section area of the flow path has more influence over the jet performances than the length of the flow path. Based on the computational results, the synthetic jet based flow supplying devices could be improved by applying suitable shape of the flow path.

Operation Strategy of Groundwater Dam Using Estimation Technique of Groundwater Level (지하수위 예측기법을 활용한 지하댐 운영전략)

  • Bu, Seong-An;Sin, Sang-Mun;Choe, Yong-Seon;Park, Jae-Hyeon;Jeong, Gyo-Cheol;Park, Chang-Geun
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.236-245
    • /
    • 2006
  • Among a number of methodologies for developing groundwater supply to overcome drought events reported in the research community, an accurate estimation of the groundwater level is an important initial issue to provide an efficient method for operating groundwater. The primary objective of this paper is to develop an advanced prediction model for the groundwater level in the catchment area of the Ssangcheon groundwater dam using precipitation based period dividing algorithm and response surface methodology (RSM). A numerical example clearly shows that the proposed method can effectively forecast groundwater level in terms of correlation coefficient ($R^2$) in the upstream part of the Ssangcheon groundwater dam.

  • PDF

Multi-sensor data fusion based assessment on shield tunnel safety

  • Huang, Hongwei;Xie, Xin;Zhang, Dongming;Liu, Zhongqiang;Lacasse, Suzanne
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.693-707
    • /
    • 2019
  • This paper proposes an integrated safety assessment method that can take multiple sources data into consideration based on a data fusion approach. Data cleaning using the Kalman filter method (KF) was conducted first for monitoring data from each sensor. The inclination data from the four tilt sensors of the same monitoring section have been associated to synchronize in time. Secondly, the finite element method (FEM) model was established to physically correlate the external forces with various structural responses of the shield tunnel, including the measured inclination. Response surface method (RSM) was adopted to express the relationship between external forces and the structural responses. Then, the external forces were updated based on the in situ monitoring data from tilt sensors using the extended Kalman filter method (EKF). Finally, mechanics parameters of the tunnel lining were estimated based on the updated data to make an integrated safety assessment. An application example of the proposed method was presented for an urban tunnel during a nearby deep excavation with multiple source monitoring plans. The change of tunnel convergence, bolt stress and segment internal forces can also be calculated based on the real time deformation monitoring of the shield tunnel. The proposed method was verified by predicting the data using the other three sensors in the same section. The correlation among different monitoring data has been discussed before the conclusion was drawn.