• 제목/요약/키워드: Response Modeling

검색결과 1,892건 처리시간 0.029초

축방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성 (Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion)

  • Kim, Na-Eun;Hyun, Sang-Hak;Yoo, Hong-Hee
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.331.2-331
    • /
    • 2002
  • A modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method. Frequency response characteristics are investigated with the modeling method. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the dynamic response. (omitted)

  • PDF

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • 제8권2호
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

Risk Assessment for Noncarcinogenic Chemical Effects

  • Kodell Ralph L.
    • 대한예방의학회:학술대회논문집
    • /
    • 대한예방의학회 1994년도 교수 연수회(환경)
    • /
    • pp.412-415
    • /
    • 1994
  • The fundamental assumption that thresholds exist for noncarcinogenic toxic effects of chemicals is reviewed; this assumption forms the basis for the no-observed-effect level/ safety-factor (NOEL/SF) approach to risk assessment for such effects. The origin and evolution of the NOEL/SF approach are traced, and its limitations are discussed. The recently proposed use of dose-response modeling to estimate a benchmark dose as a replacement for the NOEL is explained. The possibility of expanding dose-response modeling of non carcinogenic effects to include the estimation of assumed thresholds is discussed. A new method for conversion of quantitative toxic responses to a probability scale for risk assessment via dose-response modeling is outlined.

  • PDF

Effects of numerical modeling simplification on seismic design of buildings

  • Raheem, Shehata E Abdel;Omar, Mohamed;Zaher, Ahmed K Abdel;Taha, Ahmed M
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.731-753
    • /
    • 2018
  • The recent seismic events have led to concerns on safety and vulnerability of Reinforced Concrete Moment Resisting Frame "RC-MRF" buildings. The seismic design demands are greatly dependent on the computational tools, the inherent assumptions and approximations introduced in the modeling process. Thus, it is essential to assess the relative importance of implementing different modeling approaches and investigate the computed response sensitivity to the corresponding modeling assumptions. Many parameters and assumptions are to be justified for generation effective and accurate structural models of RC-MRF buildings to simulate the lateral response and evaluate seismic design demands. So, the present study aims to develop reliable finite element model through many refinements in modeling the various structural components. The effect of finite element modeling assumptions, analysis methods and code provisions on seismic response demands for the structural design of RC-MRF buildings are investigated. where, a series of three-dimensional finite element models were created to study various approaches to quantitatively improve the accuracy of FE models of symmetric buildings located in active seismic zones. It is shown from results of the comparative analyses that the use of a calibrated frame model which was made up of line elements featuring rigid offsets manages to provide estimates that match best with estimates obtained from a much more rigorous modeling approach involving the use of shell elements.

MARS Modeling for Ordinal Categorical Response Data: A Case Study

  • Kim, Ji-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.711-720
    • /
    • 2000
  • A case study of modeling ordinal categorical response data with the MARS method is done. The study is to analyze the effect of some personal characteristics and socioeconomic status on the teenage marijuana use. The MARS method gave a new insight into the data set.

  • PDF

축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성 (Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion)

  • 김나은;현상학;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제13권3호
    • /
    • pp.210-216
    • /
    • 2003
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성 (Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion)

  • 김나은;현상학;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.262-267
    • /
    • 2002
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of a axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

  • PDF

정전 용량형 MEMS 공진기의 비이상적 주파수 응답 모델링 (Modeling of non-ideal frequency response in capacitive MEMS resonator)

  • 고형호
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.191-196
    • /
    • 2010
  • In this paper, modeling of the non-ideal frequency response, especially "notch-and-spike" magnitude phenomenon and phase lag distortion, are discussed. To characterize the non-ideal frequency response, a new electro-mechanical simulation model based on SPICE is proposed using the driving loop of the capacitive vibratory gyroscope. The parasitic components of the driving loop are found to be the major factors of non-ideal frequency response, and it is verified with the measurement results.

Response Surface Methodology Using a Fullest Balanced Model: A Re-Analysis of a Dataset in the Korean Journal for Food Science of Animal Resources

  • Rheem, Sungsue;Rheem, Insoo;Oh, Sejong
    • 한국축산식품학회지
    • /
    • 제37권1호
    • /
    • pp.139-146
    • /
    • 2017
  • Response surface methodology (RSM) is a useful set of statistical techniques for modeling and optimizing responses in research studies of food science. In the analysis of response surface data, a second-order polynomial regression model is usually used. However, sometimes we encounter situations where the fit of the second-order model is poor. If the model fitted to the data has a poor fit including a lack of fit, the modeling and optimization results might not be accurate. In such a case, using a fullest balanced model, which has no lack of fit, can fix such problem, enhancing the accuracy of the response surface modeling and optimization. This article presents how to develop and use such a model for the better modeling and optimizing of the response through an illustrative re-analysis of a dataset in Park et al. (2014) published in the Korean Journal for Food Science of Animal Resources.

자기 베어링 시스템의 모델링 및 동정에 관한 연구 (A Study on Modeling and Identification for the Magnetic Bearing System)

  • 심성효;김창화;양주호
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.44-52
    • /
    • 2001
  • This paper considers a modeling and identification for the MIMO magnetic bearing system. To obtain the nominal plant transfer functions, we have experimented on the frequency response by a closed-loop identification method because the system is unstable essentially. We suggest a method of curve-fitting for obtaining the transfer function from the frequency responses by using the system's modeling structure and two controllers which are different from each other. From the frequency response results, we found the effects of coupling by opposing controllers. And using this effects and the system's modeling structure, we could obtain the transfer functions of which have the same modularized denominators.

  • PDF