With the introduction of the RAMS(Reliability, Availability, Maintainability, Safety), the interest of the system assurance has been increased. First of all, fast-growing electronic circuit requires analyzing the failure rates, by dividing the signalling system more specifically. Since 2005, the K.N.R (Korean National Railway) has incorporated ERP(Enterprise Resource Planning) in order to establish the complete status as the top international comprise, therefore while ordering the project, it has established the classification system and then has been applying to ERP system in 2007. Due to the complex of the classification system, the reliability analysis of the signalling system was assessed with the limit of IXL ATP with On-board and wayside equipment. This paper assumed MTBF(Mean Time Between Failure), MTTR((Mean Time Between Repair) of total signalling system, by using the classification of ERP program.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.250-255
/
2002
This paper describes the study methods of identifying forest vegetation types, based on this study, forest vegetation classification method based on vegetation index is proposed. According to reflectance data of vegetation canopy and soil line equation NIR=1.506R+0.0076 in Jingyuetan, Changchun, China, many vegetation index are calculated and analyzed. The relationships between vegetation index and vegetation types are that PVI identifies broadleaf forest and conifer forest the most easily, the next is TSAVI and MSAVI, but their calculation is complex. RVI values of different conifer trees vary obviously, so RVI can classify conifer trees. In a word, combination of PVI and RVI is evaluated to classify different vegetation types.
Purpose: To develop the patient classification system based on the resource utilization for reimbursement of long-term care hospitals in Korea. Method: Health Insurance Review & Assessment Service (HIRA) conducted a survey in July 2006 that included 2,899 patients from 35 long-term care hospitals. To calculate resource utilization, we measured care time of direct care staff (physicians, nursing personnel, physical and occupational therapists, social workers). The survey of patient characteristics included ADL, cognitive and behavioral status, diseases and treatments. Major category criteria was developed by modified delphi method from 9 experts. Each category was divided into 2-3 groups by ADL using tree regression. Relative resource use was expressed as a case mix index (CMI) calculated as a proportion of mean resource use. Result: This patient classification system composed of 6 major categories (ultra high medical care, high medical care, medium medical care, behavioral problem, impaired cognition and reduced physical function) and 11 subgroups by ADL score. The differences of CMI between groups were statistically significant (p<.0001). Homogeneity of groups was examined by total coefficient of variation (CV) of CMI. The range of CV was 29.68-40.77%. Conclusions: This patient classification system is feasible for reimbursement of long-term care hospitals.
Purpose: The purpose of this study was to classify the elderly in long-term care facilities using the Resource Utilization Group(RUG-III) and to examine the feasibility of a payment method based on the RUG-III classification system in Korea. Method: This study measured resident characteristics using a Resident Assessment Instrument-Minimum Data Set(RAI-MDS) and staff time. Data was collected from 530 elderly residents over sixty, residing in long-term care facilities. Resource use for individual patients was measured by a wage-weighted sum of staff time and the total time spent with the patient by nurses, aides, and physiotherapists. Result: The subjects were classified into 4 groups out of 7 major groups. The group of Clinically Complex was the largest (46.3%), and then Reduced Physical Function(27.2%), Behavior Problems (17.0%), and Impaired Cognition (9.4%) followed. Homogeneity of the RUG-III groups was examined by total coefficient of variation of resource use. The results showed homogeneity of resource use within RUG-III groups. Also, the difference in resource use among RUG major groups was statistically significant (p<0.001), and it also showed a hierarchy pattern as resource use increases in the same RUG group with an increase of severity levels(ADL). Conclusion: The results of this study showed that the RUG-Ill classification system differentiates resources provided to elderly in long-term care facilities in Korea.
Purpose: This study was conducted to examine whether the level of classification for long-term care service under longterm care insurance reflects resource utilization level for residents in nursing homes. Methods: From 2 long-term care facilities, the researchers selected 95 participants and identified description and time of care services provided by nurses, certified caregivers, physical therapists and social workers during a 24-hr-period. Results: Resource utilization level was: 281.04 for level 1, 301.05 for level 2 and 270.87 for level 3. Resource utilization was not correlated with level. Differences in resource utilization within the same level were similar with the coefficient of variance, 22.7-27.1%. Physical function was the most influential factor on long-term care scores (r=.88, p<.001). The level for long-term care service did not reflect differences in resource utilization level of residents on long-term care insurance. Conclusion: The results of this study indicate that present grading for long-term care service needs to be reconsidered. Further study is needed to adjust the long-term care classification system to reflect the level of resource utilization for care recipients on the long-term care insurance.
최근 자연어 처리 분야에서 대규모 사전학습 언어모델(Large-scale pretrained language model, LPLM)이 발전함에 따라 이를 미세조정(Fine-tuning)한 의도 분류 모델의 성능도 개선되었다. 하지만 실시간 응답을 요하는 대화 시스템에서 대규모 모델을 미세조정하는 방법은 많은 운영 비용을 필요로 한다. 이를 해결하기 위해 본 연구는 저성능 자원에서도 멀티에이전트 운영이 가능한 의도 분류 모델 경량화 방법을 제안한다. 제안 방법은 경량화된 문장 인코더를 학습하는 과제 독립적(Task-agnostic) 단계와 경량화된 문장 인코더에 어답터(Adapter)를 부착하여 의도 분류 모델을 학습하는 과제 특화적(Task-specific) 단계로 구성된다. 다양한 도메인의 의도 분류 데이터셋으로 진행한 실험을 통해 제안 방법의 효과성을 입증하였다.
South Africa has developed a policy and law that calls and provides for the equitable and sustainable use of water resources. Sustainable resource use is dependent on effective resource protection. Rivers are the most important freshwater resources in the country, and there is a focus on developing and applying methods to quantify what rivers need in terms of flow and water quality. These quantified and descriptive objectives are then related to specified levels of ecological health in a classification system. This paper provides an overview of an integrated and systematic methodology, where, fer each river, and each river reach, the natural condition and the present ecological condition are described, and a level/class of ecosystem health is selected. The class will define long term management goals. This procedure requires each ecosystem component to be quantified, starting with the abiotic template. A modified flow regime is modelled for each ecosystem health class, and the resultant fluvial geomorphology and hydraulic habitats are described. Then the water chemistry is described, and the water quality changes that are likely to occur as a consequence of altered flows are predicted. Finally, the responses to the stress imposed on the biota (fish, invertebrates and vegetation) by modified flow and water quality are predicted. All of the predicted responses are translated into descriptive and/or quantitative management objectives. The paper concludes with the recognition of active method development, and the enormous challenge of applying the methods, implementing the law, and achieving river protection and sustainable resource-use.
A series of system dynamics model was developed for forecasting demand and supply of human resource in the electricity industry. To forecast demand of human resource in the electric power industry, BLS (Bureau of Labor Statistics) methodology was used. To forecast supply of human resource in the electric power industry, forecasting on the population of our country and the number of students in the department of electrical engineering were performed. After performing computer simulation with developed system dynamics model, it is discovered that the shortage of human resource in the electric power industry will be 3,000 persons per year from 2006 to 2015, and more than a double of current budget is required to overcome this shortage of human resource.
Organizations in some industries are still hesitant to adopt the Enterprise Resource Planning (ERP) system due to its high risk of failures. This study examined how industry classification affects the successful implementation of the ERP system. To achieve this goal, we reinvestigated the existing ERP Success Model that was developed by Chung with the data from various industry sectors, since Chung validated the model only in the engineering and construction industries. In order to test to see if the Chung model can be applicable outside the engineering and construction industries, the relationships between the ERP success indicators and the critical success factors in the Chung model and those in the sample data collected from ten different industry sectors were compared and investigated. The ten industry sectors were selected based on the Global Industry Classification Standard (GICS). We found that the impact of success factors on the success of implementing an ERP system varied across industry sectors. This means that the success of ERP system implementation can be industry-specific. Thus, industry classification should be considered as another factor to help IT decision makers or top-management avoid ERP system failures when they plan to implement a new ERP system.
Purpose: This study was to classify elderly in long-term care hospitals for using Resource Utilization Group(RUG-III) and to consider feasibility of payment method based on RUG-III classification system in Korea. Method: This study designed by measuring resident characteristics using the Resident Assessment Instrument-Minimum Data Set(RAI-MDS) and staff time. The data were collected from 382 elderly over sixty-year old, inpatient in the five long-term care hospitals. Staff time was converted into standard time based on the average wage of nurse and aids. Result: The subjects were classified into 4 groups. The group of Clinically Complex was the largest(46.3%), Reduced Physical Function(27.2%), Behavior Problem(17.0%), and Impaired Cognition(9.4%). The average resource use for one resident in terms of care time(nurses, aids) was 183.7 minutes a day. Relative resource use was expressed as a case mix index(CMI) calculated as a proportion of mean resource use. The CMI of Clinically Complex group was the largest(1.10), and then Reduced Physical Function(0.93), Behavior Problem(0.93), and Impaired Cognition(0.83) followed. The difference of the resource use showed statistical significance between major groups(p<0.0001). Conclusion: The results of this study showed that the RUG-III classification system differentiates resources provided to elderly in long-term care hospitals in Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.