• Title/Summary/Keyword: Resonance method

Search Result 2,462, Processing Time 0.036 seconds

An Optimal Damping Control Algorithm of Direct Two-level Inverter for Miniaturization and Weight Reduction of Auxiliary Power Supply on Railway Vehicle

  • Lee, Chang-hee;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2335-2343
    • /
    • 2018
  • This paper proposes an optimal damping control algorithm of the DTI (Direct Two-level Inverter) to miniaturize and reduce the weight of auxiliary power supply for railway vehicles. The conventional auxiliary power supply for railway vehicles uses a DC-DC converter to maintain the inverter input power from the line voltage smoothly. The proposed topology does not use a DC-DC converter for reducing of manufacturing and maintenance costs. It also proposes a DTI topology removed damping resistors that generate ground signal noise in a certain period. At this time, a resonance phenomenon of DC-link voltage occurs due to variation of the inductive load, and a method of controlling the resonance phenomenon of DC-link voltage is required. In order to suppress the resonance phenomenon of the DC-link voltage, at a point before resonance occurs, this paper introduces an algorithm to suppress the resonance phenomenon of DC-link voltage by compensating the resonance component of the q axis voltage of the synchronous reference frame. The proposed algorithm verifies the effect through simulation and experiment.

A Study on the Pressure Resonance with Combustion Chamber Geometry for a Spark Ignition Engine (스파크 점화기관의 연소실 형상에 따른 공진현상 해석에 관한 연구)

  • Park, Gyeong-Seok;Jang, Seok-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1905-1910
    • /
    • 2001
  • Pressure resonance frequency that is caused in the combustion chamber can be interpreted by acoustic analysis. Until now the pressure resonance has been assumed and calculated to a disc type combustion chamber that neglected the combustion chamber height because the knock occurs near the TDC(top dead center). In this research FEM(finite element method) has been used to calculate the pressure resonance frequency inside the experimental engine combustion. The error of the resonance frequency obtained by FEM has decreased about 50% compared to the calculation of Draper's equation. Due to the asymmetry in the shape of the combustion chamber that was neglected in Draper's equation we could find out that a new resonance frequency could be generated. To match the experimental results, the speed of sound that satisfies Draper's equation is selected 13% higher than the value for pent-roof type combustion chamber.

Impedance Matching Based Control for the Resonance Damping of Microgrids with Multiple Grid Connected Converters

  • Tan, Shulong;Geng, Hua;Yang, Geng
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2338-2349
    • /
    • 2016
  • This paper presents an impedance-matching-based control scheme for the harmonic resonance damping of multiple grid-connected-converters (GCCs) with LCL filters. As indicated in this paper, harmonic resonance occurs if a GCC possesses an output impedance that is not matched with the rest of the network in some specific frequency bands. It is also revealed that the resonance frequency is associated with the number of GCCs, the grid impedance and even the capacitive loads. By controlling the grid-side current instead of the converter-side current, the critical LCL filter is restricted as an internal component. Thus, the closed-loop output impedance of the GCC within the filter can be configured. The proposed scheme actively regulates the output impedance of the GCC to match the impedance of the external network, based on the detected resonance frequency. As a result, the resonance risk of multiple GCCs can be avoided, which is beneficial for the plug-and-play property of the GCCs in microgrids. Simulation and experimental results validate the effectiveness of the proposed method.

The effects of temperature and porosity on resonance behavior of graphene platelet reinforced metal foams doubly-curved shells with geometric imperfection

  • Jiaqin Xu;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.81-93
    • /
    • 2023
  • Due to the unclear mechanism of the influence of temperature on the resonance problem of doubly curved shells, this article aims to explore this issue. When the ambient temperature rises, the composite structure will expand. If the thermal effects are considered, the resonance response will become more complex. In the design of structure, thermal effect is inevitable. Therefore, it is of significance to study the resonant behavior of doubly curved shell structures in thermal environment. In view of this, this paper extends the previous work (She and Ding 2023) to the case of the nonlinear principal resonance behavior of graphene platelet reinforced metal foams (GPLRMFs) doubly curved shells in thermal environment. The effect of uniform temperature field is taken into consideration in the constitutive equation, and the nonlinear motion control equation considering temperature effect is derived. The modified Lindstedt Poincare (MLP) method is used to obtain the resonance response of doubly curved shells. Finally, we study the effects of temperature changes, shell types, material parameters, initial geometric imperfection and prestress on the forced vibration behaviors. It can be found that, as the temperature goes up, the resonance position can be advanced.

113Cd and 133Cs NMR Study of Nucleus-Phonon Interactions in Linear-Chain Perovskite-Type CsCdBr3

  • Park, Sung Soo;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.4
    • /
    • pp.109-113
    • /
    • 2016
  • Resonance frequencies from the $^{113}Cd$ and $^{133}Cs$ nuclear magnetic resonance (NMR) spectra for the $CsCdBr_3$ single crystal were measured at varying temperatures by the static NMR method. The temperature-dependent changes of these frequencies are related to the changing structural geometry of the ${CdBr_6}^{4-}$ units, which affects the environment of $^{133}Cs$. The spin-lattice relaxation rates ($1/T_1$) for the $^{113}Cd$ and $^{133}Cs$ nuclei were measured in order to obtain detailed information about the dynamics of $CsCdBr_3$ crystals. The dominant relaxation mechanisms for $^{113}Cd$ and $^{133}Cs$ nuclei are direct single-phonon and Raman spin-phonon processes, respectively.

Surface Plasmon Resonance Based on ZnO Nano-grating Structure (산화아연을 이용한 나노격자 구조의 표면 플라즈몬 공명)

  • Kim, Doo-Gun;Kim, Seon-Hoon;Ki, Hyun-Chul;Kim, Hwe-Jong;Oh, Geum-Yoon;Choi, Young-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.922-926
    • /
    • 2010
  • We have investigated the grating coupled surface plasmon resonance (GC-SPR) sensors using ZnO nano-grating structures to enhance the sensitivity of an SPR sensor. The GC-SPR sensors were analyzed using the finite-difference time-domain method. The optimum resonance angles of 49 degrees are obtained in the 150 nm wide grating structure with a period of 300 nm for the ZnO thickness of 30 nm. Then, the ZnO nano-grating patterns were fabricated by using laser interference lithography. The measured resonance angle of nano-grating patterns was around 49 degrees. Here, an enhanced evanescent field is obtained due to the surface plasmon on the edge of the bandgap when the ZnO grating structures are used to excite the surface palsmon.

Determination of Monoclonal Antibodies Capable of Recognizing the Native Protein Using Surface Plasmon Resonance

  • Kim, Deok-Ryong
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.452-456
    • /
    • 2001
  • Surface plasmon resonance has been used for a biospecific interaction analysis between two macromolecules in real time. Determination of an antibody that is capable of specifically interacting with the native form of antigen is very useful for many biological and medical applications. Twenty monoclonal antibodies against the $\alpha$ subunit of E. coli DNA polymerase III were screened for specifically recognizing the native form of protein using surface plasmon resonance. Only four monoclonal antibodies among them specifically recognized the native $\alpha$ protein, although all of the antibodies were able to specifically interact with the denatured $\alpha$ subunit. These antibodies failed to interfere with the interaction between the $\tau$ and $\alpha$ subunits that were required for dimerization of the two polymerases at the DNA replication fork. This real-time analysis using surface plasmon resonance provides an easy method to screen antibodies that are capable of binding to the native form of the antigen molecule and determine the biological interaction between the two molecules.

  • PDF

The Measurement of the Resonance Frequency of Transducer by Ultrasonic Visualization (초음파의 가시화에 의한 진동자의 공진주파수 측정에 관한 연구)

  • Lee, B.S.;Han, E.K.;Song, C.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.3
    • /
    • pp.14-23
    • /
    • 1993
  • A method to measure the resonance frequency of the ultrasonic transducer which is adhered to the specimen by the ultrasonic visualization is tried. The result shows that the resonance frequency of the transducer adhered to the specimen is lower than the nominal resonance frequency of the transducer in itself and the greater the degree of deviation. It is verified that its cause is the resonance of Al-plate for protecting the transducer by the theoretical analysis.

  • PDF

EFFECTS OF PARTICLE RESONANCE ON DISPERSION OF ELASTIC WAVES IN PARTICULATE COMPOSITES

  • Kim, J.Y.;Ih, J.G.;Lee, B.H.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.734-739
    • /
    • 1994
  • Elastic wave propagation in discrete random medium is studied to evaluate the effects of particle resonance on dispersion and attenuation of composite materials containing spherical inclusions. The frequency-dependent wave speed and attenuation coefficient can be obtained from proposed self-consistent method. It can be observed that the abrupt increase of effective wave speed and the concurrent peak of attenuation at low frequency is due to the lowest resonance of particles, whereas those in high frequency region are due to higher ones. The lowest resonance is mainly caused by the density mismatch and higher resonances by the stiffness mismatch between matrix and particles. The dispersion and attenuation of elastic waves in particulate composites are affected by the lowest resonance much than by higher ones.

  • PDF

Resonance Characteristics for 2-Dimensional Circular Wind Tunnel (2차원 원형 풍동의 공진 특성)

  • Baik, Ki-Young;Lee, In
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1087-1095
    • /
    • 1990
  • A finite element method is used for analyzing the resonance characteristics of circular wind tunnel. Two-dimensional circular wind tunnel with one and three slots is considered. The wind tunnel resonance characteristics are affected by the number and position of the slots of the wind tunnel. The resonant frequencies for the vertical vibration mode are higher than those for the horizontal vibration mode. The resonance frequencies increase as the open area ratio increases.