DOI QR코드

DOI QR Code

113Cd and 133Cs NMR Study of Nucleus-Phonon Interactions in Linear-Chain Perovskite-Type CsCdBr3

  • Park, Sung Soo (Analytical Laboratory of Advanced Ferroelectric Crystals, Jeonju University) ;
  • Lim, Ae Ran (Analytical Laboratory of Advanced Ferroelectric Crystals, Jeonju University)
  • Received : 2016.10.12
  • Accepted : 2016.12.02
  • Published : 2016.12.20

Abstract

Resonance frequencies from the $^{113}Cd$ and $^{133}Cs$ nuclear magnetic resonance (NMR) spectra for the $CsCdBr_3$ single crystal were measured at varying temperatures by the static NMR method. The temperature-dependent changes of these frequencies are related to the changing structural geometry of the ${CdBr_6}^{4-}$ units, which affects the environment of $^{133}Cs$. The spin-lattice relaxation rates ($1/T_1$) for the $^{113}Cd$ and $^{133}Cs$ nuclei were measured in order to obtain detailed information about the dynamics of $CsCdBr_3$ crystals. The dominant relaxation mechanisms for $^{113}Cd$ and $^{133}Cs$ nuclei are direct single-phonon and Raman spin-phonon processes, respectively.

Keywords

References

  1. F. Ramaz, R. M. Macfarlane, J. C. Vial, J. P. Chaminade, and F. Madeore, J. Lumin. 55, 173 (1993) https://doi.org/10.1016/0022-2313(93)90039-P
  2. O. G. Noel, P. Goldner, and Y. L. Du, Spectrosc. Lett. 40, 247 (2007) https://doi.org/10.1080/00387010701247365
  3. H.-Q. Wang, X.-Y. Kuang, and H.-F. Li, Chem. Phys. Lett. 460, 365 (2008) https://doi.org/10.1016/j.cplett.2008.05.087
  4. L. Kang, D. M. Ramo, Z. Lin, P. D. Bristowe, J. Qin, and C. Chen, J. Mater. Chem. C1, 7363 (2013) https://doi.org/10.1039/c3tc31283f
  5. M. G. Brik, and A. A. Chaykin, J. Lumin. 145, 563 (2014) https://doi.org/10.1016/j.jlumin.2013.08.037
  6. B. Z. Malkin, A. I. Iskhakova, S. Kamba, J. Heber, M. Altwein, and G. Schaack, Phys. Rev. B 63, 75104 (2001) https://doi.org/10.1103/PhysRevB.63.075104
  7. O. Guillot-Noel, Ph. Goldner, and D. Gourier, Phys. Rev. A 66, 63813 (2002) https://doi.org/10.1103/PhysRevA.66.063813
  8. O. Guillot-Noel, Ph. Goldner, P. Higel, and D. Gourier, J. Phys. Condens. Matter 16, R1 (2004) https://doi.org/10.1088/0953-8984/16/3/R01
  9. M. Mujaji, and J. D. Comins, Phys. Status Solidi C 1, 2372 (2004) https://doi.org/10.1002/pssc.200404840
  10. M. Karbowiak, A. Mech, and J. Drozdzynski, Chem. Phys. 308, 135 (2005) https://doi.org/10.1016/j.chemphys.2004.08.014
  11. S. P. Huang, W.-D. Cheng, D.-S. Wu, X. D. Li, Y.-Z. Lan, F.-F. Li, J. Shen, H. Zhang, and Y.-J. Gong, J. Appl. Phys. 99, 13516 (2006) https://doi.org/10.1063/1.2159086
  12. A. Ferrier, M. Velazquez, J.-L. Doualan, and R. Monwrge, J. Appl. Phys. 104, 123513 (2008) https://doi.org/10.1063/1.3033492
  13. A. Ferrier, M. Velazquez, J.-L. Doualan, and R. Monocorge, J. Lumin. 129, 1905 (2009) https://doi.org/10.1016/j.jlumin.2009.04.051
  14. Z.-X. Yan, X.-Y. Kuang, M.-L. Duan, C.-G. Li, and R.-P. Chai, Mol. Phys. 108, 1899 (2010) https://doi.org/10.1080/00268976.2010.496740
  15. R. Demirbilek, R. Feile, and A.C. Bozdogan, J. Lumin. 161, 174 (2015) https://doi.org/10.1016/j.jlumin.2015.01.024
  16. J. Neukum, N. Bodenschatz, and J. Heber, Phys. Rev. B 50, 3536 (1994) https://doi.org/10.1103/PhysRevB.50.3536
  17. Ph. Goldner, F. Pelle, D. Meichenin, and F. Auzel, J. Lumin. 71, 137 (1997) https://doi.org/10.1016/S0022-2313(96)00128-7
  18. G. L. McPherson, A. M. McPherson, and J. L. Atwood, J. Phys. Chem. Solids 41, 495 (1980) https://doi.org/10.1016/0022-3697(80)90180-8
  19. A. Abragam, The Principles of Nuclear magnetism, Oxford University Press, Oxford (1961)
  20. M. Igarashi, H. Kitagawa, S. Takagawa, R. Yoshizaki, Y. Abe, Z. Naturforsch. A47, 313 (1992)