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ABSTRACT Elastic wave propagation in discrete random medium is studied to evaluate the 
effects of particle resonance on dispersion and attenuation of composite materials containing 
spherical inclusions. The frequency-dependent wave speed and attenuation coefficient can be 
obtained from proposed self-consistent method. It can be observed that the abrupt increase of 
effective wave speed and the concurrent peak of attenuation at low frequency is due to the lowest 
resonance of particles, whereas those in high frequency region are due to higher ones. The lowest 
resonance is mainly caused by the density mismatch and higher resonances by the stiffiiess 
mismatch between matrix and particles. The dispersion and attenuation of clastic waves in 
particulate composites are affected by the lowest resonance much more than by liigher ones.

1. INTRODUCTION

In this paper, three conditions that must be satisfied by the dynamic effective density and Lame 
parameters of composite medium are derived without limit of frequency in a self-consistent way. 
The method for predicting the dynamic effective properties of composites proposed in this study 
is closely related with the coherent potential approximation in disordered alloy physics.1'2 3 
Frequency dependent effective density and Lame parameters can be directly obtained by solving 
the aforementioned sel&consistent conditions. This also differentiates the present method with 
others in which the parameters are usually obtained from the wave speeds by assuming the 
dynamic effective density as the volume-weighted average density. Comparing the dispersion and 
attenuation curves with those of effective properties, one can clearly realize that an important 
physical phenomenon related with the dynamic properties of discrete random medium is the 
resonant scattering of particles in effective medium. Moreover, one can easily observe the 
influence of resonance modes on the dispersion and attenuation. In this manner, more insights can 
be given into the underlying physics of elastic wave propagation in discrete random media. 
Resultant wave speeds and attenuation coefficients calculated from dynamic properties are 
compared with the experimental results of Kinra et a/.3*4 * as well as with the theoretical results of 
Waterman and Truell10 where the same order of approximation with the present theory was 
employed.

2. THEORY

The self-consistent way to predict the effective properties can be summarized as follows: firstly,
the effective medium is defined that the field in that medium is the mean field. Therefore, the sum
of fluctuations due to the variations of material property from that of effective medium should be
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vanished on the average. To obtain the self-consistency, the true matrix and inclusions are 
embedded in the effective medium having undetermined elastic properties. The property of 
effective medium is then determined by setting the ensemble average of the total scattering 
operator, T, to be zero. The total scattering operator contains the whole multiple scattering 
processes due to the embedded true matrix and inclusions in effective medium. However, since 
the computation of total scattering operator is not feasible in general, the sclf-consistency 
condition is usually approximated by using the single scattering operator, t.2»3 That is, the 
properties of efifective medium can be determined from the following condition:

(t) = o, (i)

where〈)is an operator for ensemble averaging over composition, orientation, and shape of 
scatterers. For the sake of simplicity, the scatterer will be modeled as an equivalent sphere that is 
identical to all constituents as shown in Fig.l, and thus the averaging is performed only for the 
compositions as follow:

〈t)= gt，=0, (2)

where 七 and t7 denote the volume fraction and scattering operator of the j-th composition, 
respectively. When the mean field is assumed to be the plane longitudinal wave field propagating 
in the effective medium as shown in Fig.l, then the displacement of the mean field can be 
expressed as

u = a exp[z(^/a - r -仞)], (3)

where a means the unit vector of motion having the same direction with the propagating 
direction. The superscript means a quantity of the effective medium. The effective 

longitudinal wavenumber, 드 企/cf), remains unknown yet. The self-consistency condition of 
Eq.(l) can be equivalently rewritten as

(a-t-a) = 0. (4)

where the dyadic notation is used. In Eq.(4), the self-consistency condition is reexpressed by the 
average scattered wave which is made to be vanished in forward direction. In order to obtain three 
self-consistency conditions, the fer field scattering displacement is to be evaluated. The scattered 
field is given by

GM；) 흐里业+ 咻;)흐业纠 (5)
r r

where f(k；) and g(k：) denote the scattering amplitudes of the longitudinal and shear waves at 
far field in the direction of r, respectively. The longitudinal scattering amplitude can be expressed 
as
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f(k；) = ?J 傷渺u • V + &呻△ _ 2必e： w} exp(Tk； • r)dr (6)

where A(=知)and E are dilatation and strain tensor inside the scattcrer, respectively, and the 
colon implies the scalar product of second order tensors.
By using the relationship between scattering operator and forward scattering field,3 * 5 one obtains

3. RESULTS AND DISCUSSION

Numerical calculations are performed fbr a random particulate composite of lead particles in
epoxy (EPON 828-Z) matrix. The material properties of particles and matrix are presented in
Table I. Experimental study for this material was carried out by Kinra et alV The longitudinal
wave speed obtained from the coherent potential approximation expanded to finite frequency in 
this paper is compared with the theoretical results by Waterman and Trucll10 as well as with the
experimental results by Kinra et al. as in Fig. 2, and the corresponding attenuation coefficients
obtained from both theories are shown in Fig. 3. In these figures, it is noted that a lot of
resonance modes of particle affect on the dispersion and attenuation for volume fractions 
considered. Because the multiple scattering effect can not be considered in the Waterman and

a t a =—二5—a f, (7)
k；

and Eq.(2) becomes

£v,M = 0. (8)
1

From Eq.(8), one can observe that, in the context of scattering problem, the properties of effective 
medium can be obtained by vanishing the average of the forward scattering amplitudes by local 
variations from effective medium. Moreover, since the forward scattering amplitude is 
proportional to the total cross section as stated by the forward scattering theorem for elastic 
waves,6 * * * aforementioned condition says that the total power abstracted from the mean field must 
be vanished in the effective medium. From Eqs.(6)-(8), three independent conditions that should 
be satisfied by the elastic properties of effective medium can be derived as follows:

司, Vexp(Tk； -r)dQ. - 0, (9)

必'J exp(-ik； • r)JQ = 0, (10)

£v曲f 佃:VVcxp(Tk： • r)JQ = 0. (11) 
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Truell theory, the resonance frequencies in the results are those of a single particle embedded in 
the matrix material. It is also noted that resonance frequencies shift to higher ones from those of 
single particle in matrix as the particle volume fraction increases. In Fig.2, the lowest order 
resonance which creates an abrupt rise in wave speed shifts from the single scattering resonance 
at k^a 저 0.3 to those in effective medium at k^a 서 0.4 and k^a « 0.6 as volume fraction increase 
to 5% and 15%, respectively. It is observed that the dispersion obtained from the coherent 
potential approximation predicts the shift of resonance frequency. In contrast, the Waterman and 
Truell theory can not predict this frequency shift when the volume fraction exceeds 5%. As 
mentioned in the previous section, the multiple scattering effects can be considered in coherent 
potential approximation at least on the average. The shifts of higher order resonances are rather 
small. In Figs. 4, 5 and 6, the complex spectra of effective density and elastic moduli illustrate the 
aforementioned resonant behaviors. As can be seen in Eq.(7), scattering of clastic waves can be 
caused by the mismatching of stiffness and that of density as well. An abrupt variation of the 
magnitude appears in the density spectrum at low frequency that can not be observed in the 
stiffiiess spectra. Consequently, one can say that the density mismatch (viz. the difference in the 
inertia between matrix and particles or Aptw2u) for incident excitation gives rise to the lowest 
resonance. From these facts, the lowest resonance mode can be conjectured as the rigid-body 
oscillation. Therefore, the composite medium in this low frequency region can be modeled as an 
equivalent medium in which simple oscillators are randomly distributed. By this simple model, an 
unversal trend can be understood which is common to nearly all the fiber-reinfbrced11 and 
particulate12 composites in this frequency region: that is, the rapid increase after gradual decrease 
of wave speeds in accordance with the increase of frequency. In addition, the shifting of the 
lowest resonance frequency to higher frequency region can be explained from the fact that the 
particles oscillate in more and more stiffened surrounding medium along the increase of volume 
fraction. As a matter of course, the particle can not oscillate in phase with the matrix by the 
aforementioned difference in the inertial force. Therefore, in inhomogeneous materials the 
effective density should be complex and frequency dependent, whereas this can never be so in 
homogeneous materials. At higher frequencies, resonances can occur, which are mainly caused by 
the mismatch of dynamic stiffness, also that can be seen by comparing Figs. 2 and 3 with Figs. 4- 
6. In these figures, positions of peaks and troughs coincide with each other. In this frequency 
region, dynamic stiffiiess shows resonant behavior again. As the particle volume fraction 
increases, the resonant modes become more damped because the coherent attenuation increases 
and their frequencies shift slightly to higher frequencies. The effects of higher order resonances on 
dispersion are rather small compared with that from the zero order resonance.

4. CONCLUSION

The ordinary coherent potential approximation method that has been used in alloy physics is 
modified to investigate the frequency dependent behaviors of the dynamic stiffness and density. 
Self-consistency conditions for effective medium are derived without limit of frequency. The 
wave speed predicted by using the present theory agrees better with the experimental results than
that by Waterman and Truell theory. The 아dft of resonance frequencies can be predicted by the 
present theory. The effect of particle resonances on dispersion can be estimated qualitatively.
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Table I. Material properties of constituents.

Materials Density (kg/m3) X(GPa) 卜i(GPa)
Lead 11300 39.02 8.36
EPON 828Z 1200 4.90 1.73

Fig. 1 Mean field propating in effective medium with an inhomogeneity.
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Kinra et al. (a) Volume fraction of 5%, (b) volume fraction of 15%.
Fig. 2 Effective longitudinal wave speed. (----- ), Present theory; ( ), Waterman-Trucll theory; (•) exp,切

Fig. 3 Coherent attenuation of longitudinal wave. (----- ), Present theory; ( ), Watcrmnn-Trucll theory, (a)
Volume fraction of 5%, (b) volume fraction of 15%.
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