• Title/Summary/Keyword: Resonance coupling

Search Result 396, Processing Time 0.022 seconds

Resonance and Instability of Blade-Shaft Coupled Bending Vibrations with In-plane Blade Vibration

  • Anegawa, Norihisa;Fujiwara, Hiroyuki;Okabe, Akira;Matsushita, Osami
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.169-180
    • /
    • 2008
  • As a major component of a power plant, a turbine generator must have sufficient reliability. Longer blades have lower natural frequency, thereby requiring that the design of the shaft and blade takes into account the coupling of the blade vibration mode, nodal diameter k=0 and k=1 with vibration of the shaft. The present work analyzes the coupling of the translation motion of the shaft with in-plane vibration of the blades with k=1 modes. At a rotational speed ${\Omega}_1=|{\omega}_s-{\omega}_b|$, the resonance of the blades has a relatively large amplitude. A violent coupled resonance was observed at a rotational speed ${\Omega}_2=|{\omega}_s+{\omega}_b|$. Resonance in blade vibration at ${\Omega}_1=|{\omega}_s-{\omega}_b|$ was experimentally confirmed.

Models and Experiments for the Main Topologies of MRC-WPT Systems

  • Yang, Mingbo;Wang, Peng;Guan, Yanzhi;Yang, Zhenfeng
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1694-1706
    • /
    • 2017
  • Models and experiments for magnetic resonance coupling wireless power transmission (MRC-WPT) topologies such as the chain topology and branch topology are studied in this paper. Coupling mode theory based energy resonance models are built for the two topologies. Complete energy resonance models including input items, loss coefficients, and coupling coefficients are built for the two topologies. The storage and the oscillation model of the resonant energy are built in the time domain. The effect of the excitation item, loss item, and coupling coefficients on MRC systems are provided in detail. By solving the energy oscillation time domain model, distance enhancing models are established for the chain topology, and energy relocating models are established for the branch topology. Under the assumption that there are no couplings between every other coil or between loads, the maximum transmission capacity conditions are found for the chain topology, and energy distribution models are established for the branch topology. A MRC-WPT experiment was carried out for the verification of the above model. The maximum transmission distance enhancement condition for the chain topology, and the energy allocation model for the branch topology were verified by experiments.

$^{87}Rb$ NMR Quadrupole Coupling Constants and Asymmetry Parameters in $RbMnCl_3$

  • Woo, Ae-Ja;Park, Young-Sun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.2
    • /
    • pp.84-89
    • /
    • 1999
  • The 87Rb quadrupole coupling constants (e2qQ/h) and the asymmetry parameters (η) in RbMnCl3 were determined from a nonlinear least-squares fit to the 87Rb NMR powder spectra. The spectra were acquired in the temperature range from 260K to 330K. An important feature in this work is the determination of the quadrupole coupling constants and the asymmetry parameters for two physically nonequivalent Rb sites, Rb(I) and Rb(II), as a function of temperature. In addition, a structural phase transition at room temperature was conformed with the changes in the quadrupole coupling constant and the asymmetry parameter of Rb(II) site.

  • PDF

Acoustic Coupling Between Passenger and Luggage Compartments Through Loudspeaker Holes Using Indirect BEM (스피커 구멍을 통한 차실과 트렁크 공간과의 음향 연성에 대한 간접경계요소해석)

  • 정지훈;이정권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.66-75
    • /
    • 1997
  • Sound transmission from the luggage comparment into the car cabin is important in the viewpoint if exhaust and road noises of passenger cars. In this paper, acoustic modal coupling between passenger and luggage compartments through loudspeaker holes at parcel shelf is dealt with for a sedan type passenger car with rigid rear seat. For these purposes, a half-scaled model car is tested and computed by the indirect BEM. Predicted acoustic transfer functions are compared with experimental ones and they agree reasonably well. It is found that the fore-aft resonance frequencies of the passenger cavity in the absence of coupling holes are tend to shift to higher frequencies when the luggage compartment is coupled to the passenger cavity.

  • PDF

Transient Vibration Analysis of a Multi-packet Blade System Excited by Nozzle Jet Forces (노즐 분사력에 의해 가진되는 다중 패킷 블레이드계의 과도 진동 해석)

  • Lim, Ha-Seong;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.57-62
    • /
    • 2007
  • A modeling method for the modal and the transient vibration analysis of a multi-packet blade system excited by nozzle jet forces is presented in this paper. Blades are idealized as cantilever beams and the elastic structures like disc and shroud connecting blades are modeled as coupling stiffnesses. A modified Campbell diagram is proposed to identify true resonance frequencies of the multi-packet blade system. Different from the SAFE diagram that employs three dimensional space, the modified Campbell diagram proposed in this study employs a plane to find the true resonance frequencies. To verify the existence of true resonance frequencies, nozzle jet forces are modeled as periodic forces and transient vibration analysis were performed with the modeling method.

  • PDF

Transient Vibration Analysis of a Multi-packet Blade System Excited by Nozzle Jet Forces (노즐 분사력에 의해 가진되는 다중 패킷 블레이드계의 과도 진동 해석)

  • Lim, Ha-Seong;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.711-717
    • /
    • 2008
  • A modeling method for the modal and the transient vibration analysis of a multi-packet blade system excited by nozzle jet forces is presented in this paper. Blades are idealized as cantilever beams and the elastic structures like disc and shroud connecting blades are modeled as coupling stiffnesses. A modified Campbell diagram is proposed to identify true resonance frequencies of the multi-packet blade system. Different from the SAFE diagram that employs three dimensional space, the modified Campbell diagram Proposed in this study employs a plane to find the true resonance frequencies. To verify the existence of true resonance frequencies, nozzle jet forces are modeled as periodic forces and transient vibration analysis were performed with the modeling method.

Proposed Equivalent Circuit and Parameter Identification Method for Electro-Magnetic Resonance Based Wireless Power Transfer

  • Kawamura, Atsuo;Kim, Tae-Woong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.799-807
    • /
    • 2013
  • The proper equivalent circuit is newly presented for electro-magnetic resonance based wireless power transfer. Based on the proposed equivalent circuit of open-ended helical antennas, the parameter identification of helical antennas can be well derived for highly efficient wireless power transfer. The well-established equivalent circuit in high frequency ranges is developed for analyzing a resonance enhanced-electromagnetic coupling helical antennas and the unknown parameters for helical antennas are identified by experiments. The effectiveness based on the proposed equivalent circuit is verified through experiments.

Electron Spin Resonance Study on the Miscibility of Poly(ethylene glycol) with Cathonic Dodecyl Trimethylammonium Bromide Micelle

  • Kim Jin-Soo;Lee Don-Keun;Kang Young-Soo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.155-162
    • /
    • 2005
  • The interaction of poly(ethylene glycol)(PEG) with cationic dodecyl trimethyl ammonium bromide (DTAB)micelle was studied with electron spin resonance (ESR) by determining line widths of the ESR spectra and coupling constant of nitrogen($A_N$). The degree of ESR line shape change such as line widths and coupling constant indicated that PEG mixes well with DTAB micelle due to a great hydrophobic interaction with surfactant alkyl chains. This suggests that the PEG can be used as non-ionic surfactant to disperse the exposed oil in the ocean.

  • PDF

Electron Spin Resonance Study on the Miscibility of Poly(ethylene glycol) with Cationic Dodecyl Trimethylammonium Bromide Micelle

  • Kim, Jin-Soo;Shin, Dong-Ran;Kang, Young-Soo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.1
    • /
    • pp.59-70
    • /
    • 1997
  • The interaction of poly(ethylene glycol) (PEG) with cationic dodecyl trimethyl ammonium bromide (DTAB) micelle was studied with electron spin resonance (ESR) by determining line widths of ESR spectra and coupling constant of nitrogen(AN). The degree of ESR line shape change such as line widths and coupling constant indicated that PEG mixes well with DTAB micelle due to a great hydrophobic interaction with surfactant alkyl chains. This suggests that the PEG can be used as non-ionic surfactant to disperse the exposed oil in the ocean.

  • PDF

Cyclotron Resonance of the Wannier-Landau Transition System Based on the Ensemble Projection Technique

  • Jung-Il Park
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.4
    • /
    • pp.28-34
    • /
    • 2023
  • We study the linear-nonlinear quantum transport theory of Wannier-Landau transition system in the confinement of electrons by a square well confinement potential. We use the projected Liouville equation method with the ensemble density projection technique. We select the dynamic value under a linearly oscillatory external field. We derive the dynamic value formula and the memory factor functions in three electron phonon coupling systems and electron impurity coupling systems of two transition types, the intra-band transitions and inter-band transitions. We obtain results that can be applied directly to numerical analyses. For simple example of application, we analyze the absorption power and line-widths of ZnO, through the numerical calculation of the theoretical result in the Landau system.