• 제목/요약/키워드: Resistive Switching

검색결과 134건 처리시간 0.025초

Nanoscale Probing of Switching Behaviors of Pt Nanodisk on STO Substrates with Conductive Atomic Force Microscopy

  • Lee, Hyunsoo;Kim, Haeri;Van, Trong Nghia;Kim, Dong Wook;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.597-597
    • /
    • 2013
  • The resistive switching behaviors of Pt nanodisk on Nb-doped SrTiO3 single-crystal have been studied with conductive atomic force microscopy in ultra-high vacuum. The nanometer sizes of Pt disks were formed by using self-assembled patterns of silica nanospheres on Nb-doped SrTiO3 single-crystal semiconductor film using the Langmuir-Blodgett, followed by the metal deposition with e-beam evaporation. The conductance images shows the spatial mapping of the current flowing from the TiN coated AFM probe to Pt nanodisk surface on Nb:STO single-crystal substrate, that was simultaneously obtained with topography. The bipolar resistive switching behaviors of Pt nanodisk on Nb:STO single-crystal junctions was observed. By measuring the current-voltage spectroscopy after the forming process, we found that switching behavior depends on the charging and discharging of interface trap state that exhibit the high resistive state (HRS) and low resistive state (LRS), respectively. The results suggest that the bipolar resistive switching of Pt/Nb:STO single-crystal junctions can be performed without the electrochemical redox reaction between tip and sample with the potential application of nanometer scale resistive switching devices.

  • PDF

Large-area imaging evolution of micro-scale configuration of conducting filaments in resistive switching materials using a light-emitting diode

  • Lee, Keundong;Tchoe, Youngbin;Yoon, Hosang;Baek, Hyeonjun;Chung, Kunook;Lee, Sangik;Yoon, Chansoo;Park, Bae Ho;Yi, Gyu-Chul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.285-285
    • /
    • 2016
  • Resistive random access memory devices have been widely studied due to their high performance characteristics, such as high scalability, fast switching, and low power consumption. However, fluctuation in operational parameters remains a critical weakness that leads to device failures. Although the random formation and rupture of conducting filaments (CFs) in an oxide matrix during resistive switching processes have been proposed as the origin of such fluctuations, direct observations of the formation and rupture of CFs at the device scale during resistive switching processes have been limited by the lack of real-time large-area imaging methods. Here, a novel imaging method is proposed for monitoring CF formation and rupture across the whole area of a memory cell during resistive switching. A hybrid structure consisting of a resistive random access memory and a light-emitting diode enables real-time monitoring of CF configuration during various resistive switching processes including forming, semi-forming, stable/unstable set/reset switching, and repetitive set switching over 50 cycles.

  • PDF

저결함 그래핀 양자점 구조를 갖는 RGO 나노 복합체 기반의 저항성 메모리 특성 (Memristive Devices Based on RGO Nano-sheet Nanocomposites with an Embedded GQD Layer)

  • 김용우;황성원
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.54-58
    • /
    • 2021
  • The RGO with controllable oxygen functional groups is a novel material as the active layer of resistive switching memory through a reduction process. We designed a nanoscale conductive channel induced by local oxygen ion diffusion in an Au / RGO+GQD / Al resistive switching memory structure. A strong electric field was locally generated around the Al metal channel generated in BIL, and the local formation of a direct conductive low-dimensional channel in the complex RGO graphene quantum dot region was confirmed. The resistive memory design of the complex RGO graphene quantum dot structure can be applied as an effective structure for charge transport, and it has been shown that the resistive switching mechanism based on the movement of oxygen and metal ions is a fundamental alternative to understanding and application of next-generation intelligent semiconductor systems.

전기장 광화학 증착법에 의한 직접패턴 비정질 FeOx 박막의 제조 및 저항변화 특성 (Electric-field Assisted Photochemical Metal Organic Deposition for Forming-less Resistive Switching Device)

  • 김수민;이홍섭
    • 마이크로전자및패키징학회지
    • /
    • 제27권4호
    • /
    • pp.77-81
    • /
    • 2020
  • Resistive RAM (ReRAM)은 전이금속 산화물의 저항변화 특성을 이용하는 차세대 비휘발 메모리로 전이금속산화물 내의 산소공공의 재분포를 통한 저항변화 특성을 이용한다. 따라서 저항변화 특성을 위해 전이금속산화물 내에는 일정량 이상의 산소공공이 요구되며 이를 위해서는 박막 형성 공정에서 산화 수를 조절할 수 있는 공정이 필요하다. 본 연구에서는 직접패턴이 가능한 photochemical metal organic deposition (PMOD) 공정을 사용하여 UV 노출에 의해 photochemical metal organic precursor의 ligand가 분해되는 과정에서 전기장을 인가하여 박막내의 산화 수를 조절하는 실험을 진행하였다. Electric field assisted PMOD (EFAPMOD) 법을 이용하여 FeOx 박막의 산화 수 조절이 가능함을 x-ray photoelectron spectroscopy (XPS) 분석과 I-V 측정을 통하여 확인하였으며, EFAPMOD 공정 중 인가하는 전압의 크기를 조절하여 박막의 산화 수를 조절할 수 있음을 확인하였다. 따라서 EFAPMOD 공정 중 인가전압의 크기를 이용하여 저항변화 특성에 적합한 적정한 산화수를 가지는 금속산화물 박막을 얻고 그 저항변화 특성을 조정할 수 있음을 확인하였다.

산소 분압의 변화에 따른 Cr-Doped SrZrO3 페로브스카이트 박막의 저항변화 특성 (Resistive Switching Behavior of Cr-Doped SrZrO3 Perovskite Thin Films by Oxygen Pressure Change)

  • 양민규;박재완;이전국
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.257-261
    • /
    • 2010
  • A non-volatile resistive random access memory (RRAM) device with a Cr-doped $SrZrO_3/SrRuO_3$ bottom electrode heterostructure was fabricated on $SrTiO_3$ substrates using pulsed laser deposition. During the deposition process, the substrate temperature was $650^{\circ}C$ and the variable ambient oxygen pressure had a range of 50-250 mTorr. The sensitive dependences of the film structure on the processing oxygen pressure are important in controlling the bistable resistive switching of the Cr-doped $SrZrO_3$ film. Therefore, oxygen pressure plays a crucial role in determining electrical properties and film growth characteristics such as various microstructural defects and crystallization. Inside, the microstructure and crystallinity of the Cr-doped $SrZrO_3$ film by oxygen pressure were strong effects on the set, reset switching voltage of the Cr-doped $SrZrO_3$. The bistable switching is related to the defects and controls their number and structure. Therefore, the relation of defects generated and resistive switching behavior by oxygen pressure change will be discussed. We found that deposition conditions and ambient oxygen pressure highly affect the switching behavior. It is suggested that the interface between the top electrode and Cr-doped $SrZrO_3$ perovskite plays an important role in the resistive switching behavior. From I-V characteristics, a typical ON state resistance of $100-200\;{\Omega}$ and a typical OFF state resistance of $1-2\;k{\Omega}$, were observed. These transition metal-doped perovskite thin films can be used for memory device applications due to their high ON/OFF ratio, simple device structure, and non-volatility.

전이 금속 산화물 기반 Interface-type 저항 변화 특성 향상 연구 동향 (Research Trends on Interface-type Resistive Switching Characteristics in Transition Metal Oxide)

  • 김동은;김건우;김형남;박형호
    • 마이크로전자및패키징학회지
    • /
    • 제30권4호
    • /
    • pp.32-43
    • /
    • 2023
  • 저항 변화 메모리 소자(RRAM)는 저항 변화 특성을 기반으로 빠른 동작 속도, 간단한 소자 구조 및 고집적 구조의 구현을 통해 많은 양의 데이터를 효율적으로 처리할 수 있는 차세대 메모리 소자로 주목받고 있다. RRAM의 작동원리 중 하나로 알려진 interface type의 저항 변화 특성은 forming process를 수반하지 않고 소자 크기를 조절하여 낮은 전류에서 구동이 가능하다는 장점을 갖는다. 그 중에서도 전이 금속 산화물 기반 RRAM 소자의 경우, 정확한 물질의 조성 조절 방법과 소자의 신뢰성 및 안정성과 같은 메모리 특성을 향상시키기 위해 다양한 연구가 진행 중에 있다. 본 논문에서는 이종 원소의 도핑, 다층 박막의 형성, 화학적 조성 조절 및 표면 처리 등의 방법을 이용하여 interface type 저항 변화 특성의 저하를 방지하고 소자 특성을 향상시키기 위한 다양한 방법을 소개하고자 한다. 이를 통해 향상된 저항 변화 특성을 기반으로 한 고효율 차세대 비휘발성 메모리 소자의 구현 가능성을 제시한다.

Effect of Non-lattice Oxygen Concentration on Non-linear Interfacial Resistive Switching Characteristic in Ultra-thin HfO2 Films

  • 김영재;김종기;목인수;이규민;손현철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.359-360
    • /
    • 2013
  • The effect of electrode and deposition methods on non-linear interfacial resistive switching in HfO2 based $250{\times}250$ nm2 cross-point device was studied. HfO2 based device has the interfacial resistive switching properties of non-linearity and self-compliance current switching. The operating current in HfO2 based device was increased with negatively increasing the heat of formation energy in top electrode. Also, it was investigated that the operating current in HfO2 based device was changed with deposition methods of O3 reactant ALD, H2O reactant ALD and dc reactive sputtering, resulting the magnitude of the operating current and on/off ratio in order of HfO2 films deposited by dc reactive sputtering, H2O reactant ALD, and O3 reactant ALD. To investigate the effect of electrode and deposition methods on operating current of non-linear interfacial resistive switching in the cross-point device, X-ray photoelectron spectroscopy was measured. Through the analysis of O 1s spectra, non-lattice oxygen concentration, which is closely related to oxygen vacancies, was increased in order of Pt, TiN, and Ti top electrodes and in order of O3 reactant ALD, H2O reactant ALD, and O3 reactant ALD, and dc reactive sputtering deposition method. From all results, non-lattice oxygen concentration in ultra-thin HfO2 films play a crucial role in the operating current and memory states (LRS & HRS) in the non-linear interfacial resistive switching.

  • PDF

Resistive Switching in Vapor Phase Polymerized Poly (3, 4-ethylenedioxythiophene)

  • ;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.384-384
    • /
    • 2012
  • We report nonvolatile memory properties of poly (3, 4-ethylenedioxythiophene) (PEDOT) thin films grown by vapor phase polymerization using FeCl3 as an oxidant. Liquid-bridge-mediated transfer method was employed to remove FeCl3 for generation of pure PEDOT thin films. From the electrical measurement of memory device, we observed voltage induced bipolar resistive switching behavior with ON/OFF ratio of 103 and reproducibility of more than 103 dc sweeping cycles. ON and OFF states were stable up to 104 seconds without significant degradation. Cyclic voltammetry data illustrates resistive switching effect can be attributed to formation and rupture of conducting paths due to oxidation and reduction of PEDOT. The maximum current before reset process was found to be increase linearly with increase in compliance current applied during set process.

  • PDF

상온에서 RF 스퍼터링 방법으로 증착한 Hafnium Oxide 박막의 저항 변화 특성 (Resistive Switching Characteristics of Hafnium Oxide Thin Films Sputtered at Room Temperature)

  • 한용;조경아;윤정권;김상식
    • 한국전기전자재료학회논문지
    • /
    • 제24권9호
    • /
    • pp.710-712
    • /
    • 2011
  • In this study, we fabricate resistive switching random access memory (ReRAM) devices constructed with a Al/$HfO_2$/ITO structure on glass substrates and investigate their memory characteristics. The hafnium oxide thin film used as a resistive switching layer is sputtered at room temperature in a sputtering system with a cooling unit. The Al/$HfO_2$/ITO device exhibits bipolar resistive switching characteristics, and the ratio of the high resistance (HRS) to low resistance states (LRS) is more than 60. In addition, the resistance ratio maintains even after $10^4$ seconds.

A Materials Approach to Resistive Switching Memory Oxides

  • Hasan, M.;Dong, R.;Lee, D.S.;Seong, D.J.;Choi, H.J.;Pyun, M.B.;Hwang, H.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권1호
    • /
    • pp.66-79
    • /
    • 2008
  • Several oxides have recently been reported to have resistance-switching characteristics for nonvolatile memory (NVM) applications. Both binary and ternary oxides demonstrated great potential as resistive-switching memory elements. However, the switching mechanisms have not yet been clearly understood, and the uniformity and reproducibility of devices have not been sufficient for gigabit-NVM applications. The primary requirements for oxides in memory applications are scalability, fast switching speed, good memory retention, a reasonable resistive window, and constant working voltage. In this paper, we discuss several materials that are resistive-switching elements and also focus on their switching mechanisms. We evaluated non-stoichiometric polycrystalline oxides ($Nb_2O_5$, and $ZrO_x$) and subsequently the resistive switching of $Cu_xO$ and heavily Cu-doped $MoO_x$ film for their compatibility with modem transistor-process cycles. Single-crystalline Nb-doped $SrTiO_3$ (NbSTO) was also investigated, and we found a Pt/single-crystal NbSTO Schottky junction had excellent memory characteristics. Epitaxial NbSTO film was grown on an Si substrate using conducting TiN as a buffer layer to introduce single-crystal NbSTO into the CMOS process and preserve its excellent electrical characteristics.