• Title/Summary/Keyword: Resistant bacteria

Search Result 967, Processing Time 0.028 seconds

Screening and isolation of antibacterial proteinaceous compounds from flower tissues: Alternatives for treatment of healthcare-associated infections

  • de Almeida, Renato Goulart;Silva, Osmar Nascimento;de Souza Candido, Elizabete;Moreira, Joao Suender;Jojoa, Dianny Elizabeth Jimenez;Gomes, Diego Garces;de Souza Freire, Mirna;de Miranda Burgel, Pedro Henrique;de Oliveira, Nelson Gomes Junior;Valencia, Jorge William Arboleda;Franco, Octavio Luiz;Dias, Simoni Campos
    • CELLMED
    • /
    • v.4 no.1
    • /
    • pp.5.1-5.8
    • /
    • 2014
  • Healthcare-associated infection represents a frequent cause of mortality that increases hospital costs. Due to increasing microbial resistance to antibiotics, it is necessary to search for alternative therapies. Consequently, novel alternatives for the control of resistant microorganisms have been studied. Among them, plant antimicrobial protein presents enormous potential, with flowers being a new source of antimicrobial molecules. In this work, the antimicrobial activity of protein-rich fractions from flower tissues from 18 different species was evaluated against several human pathogenic bacteria. The results showed that protein-rich fractions of 12 species were able to control bacterial development. Due its broad inhibition spectrum and high antibacterial activity, the protein-rich fraction of Hibiscus rosa-sinensis was subjected to DEAE-Sepharose chromatography, yielding a retained fraction and a non-retained fraction. The retained fraction inhibits 29.5% of Klebsiella pneumoniae growth, and the non-retained fraction showed 31.5% of growth inhibition against the same bacteria. The protein profile of the chromatography fractions was analyzed by using SDS-PAGE, revealing the presence of two major protein bands in the retained fraction, of 20 and 15 kDa. The results indicate that medicinal plants have the biotechnological potential to increase knowledge about antimicrobial protein structure and action mechanisms, assisting in the rational design of antimicrobial compounds for the development of new antibiotic drugs.

Improved Antibacterial Effect of Blending Essential Oils (블렌딩 에센션오일의 항균효과 증진)

  • Kwon, Pil Seung;Kim, Dae-Jung;Park, Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.3
    • /
    • pp.256-262
    • /
    • 2017
  • Essential oil from herb is known to exert pharmacological effects on the human body. In this study we investigated the antibacterial activity of 4 essential oils (teetree, rosemary, melisa, and lavender), as well as the blended mixture oil of teetree, rosemary, and melisa (TRM) on three bacteria, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Antibacterial analysis was performed using the standard disk diffusion method, and minimum inhibition concentration was determined by the broth microdilution method with different concentrations of essential oils (0.5, 1, 2 and 3 mg/mL). After incubation at $37^{\circ}C$ for 24 h, the antibacterial activity was assessed by measuring the zone of growth inhibition surrounding the disks. Herb oil with the inhibition zones showed varied values ranging from6 to 25 mm. However, the components of herb oil of TRM are as highly active as the teetree oil against pathogens, generating large inhibition zones for both gram negative and positive bacteria (13~22 mm and 8 mm inhibition zones). In the analysis for MIC, TRM showed growth-inhibitory effects at 0.0625% for S. aureus and E. coli, and 1.25% for P. aeruginosa. This result demonstrated that the anti-microbial activity of TRM was greater than a single herb oil, including oxacillin, rosemary, and teetrea. As a single herb oil, both rosemary and teetrea also had an anti-microbial effect by itself, and we can expect that the blended oil mixture may exert a synergistic effect against multidrug resistant bacteria, suggesting its future application in natural preservative agents for health food and cosmetics.

Dual Coating Improves the Survival of Probiotic Bifidobacterium Strains during Exposure to Simulated Gastro-Intestinal Conditions (위장관내 조건에서 이중코팅 처리 된 프로바이오틱 비피도박테리움의 생존력 향상)

  • Kang, Joo Yeon;Lee, Do Kyung;Park, Jae Eun;Kim, Min Ji;Lee, Joong-Su;Seo, Jae-Gu;Chung, Myung Jun;Shin, Hea Soon;Ha, Nam Joo
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.275-281
    • /
    • 2013
  • Probiotics have been reported to benefit human health by modulating immunity, lowering cholesterol, improving lactose tolerance, and preventing some cancer. Once ingested, probiotic microorganisms have to survive harsh conditions such as low pH, protease-rich condition, and bile salts during their passage through the gastro-intestinal (GI) tract colonize and proliferate to exert their probiotic effects. The dual coating technology, by which the bacteria are doubly coated with peptides and polysaccharides in consecutive order, was developed to protect the ingested bacteria from the harsh conditions. The aim of the study was to evaluate the viable stability of a doubly coated blend of four species of Bifidobacterium by comparing its bile/acid resistance and heat viability in vitro with that of the non-coated blend. After challenges with acid, bile salts, heat, and viable cell counts (VVCs) of the dual coated and non-coated blend were determined by cultivation on agar plates or flow cytometric measurement after being stain with the BacLigtht kit$^{TM}$. The results showed that the dual coated blend was much higher resistant to the acidic or bile salt condition than the non-coated blend and heat viability was also higher, indicating that the dual coating can improve the survival of probiotic bacteria during their transit through the GI tract after consumption.

Effect of the mixed culture of heterofermentative lactic acid bacteria and acid-tolerant yeast on the shelf-life of sourdough (이상발효유산균과 내산성 효모와의 혼합배양이 사워도우의 저장성에 미치는 영향)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.471-481
    • /
    • 2016
  • The primary objective of this study was to investigate the effects of the bacteriocin-producing heterofermentative lactic acid bacteria (LAB) and acid-resistant yeast isolated from Mukeunji, a Korean ripened kimchi on shelf-life extension and quality improvement of sourdough. According to gene sequence analysis the heterofermentative LAB that showed the antimicrobial activity against bread-spoilage Bacillus strains were identified as Leuconostoc mesenteroides LAS112, Lactobacillus brevis LAS129, and L. mesenteroides subsp. dextranicum LAB137. In addition, the yeasts that were able to grow at acidic pH were identified as Pichia membranifaciens YS05, Pichia fermentans YS19, and Pichia anomala YS26. During sourdough fermentation the levels of acetic acid and bacteriocin produced by L. brevis LAS129 strain were higher than those of L. mesenteroides LAS112 and L. mesenteroides subsp. dextranicum LAS 137 strains, whereas LAS112 strain produced the highest levels of lactic acid. The maximum bacteriocin activity (640 AU/g) against Bacillus subtilis ATCC 35421 was obtained in sourdough fermented by mixed culture of L. brevis LAS129 and P. membranifaciens YS05 or P. anomala YS26. After 24 h of fermentation at $30^{\circ}C$, the viable cell counts of LAS129 ($10^9CFU/g$) in sourdough were higher than those of the YS05 or YS26 ($10^7CFU/g$). Meanwhile, the viable cells of bread-spoilage strain in sourdough fermented with these strains were significantly (P < 0.05) lower than the control group.

Isolation of Biogenic Amine Non-producing Lactobacillus brevis SBB07 and Its Potential Probiotic Properties (바이오제닉 아민 비생성 Lactobacillus brevis SBB07의 분리 및 잠재적 프로바이오틱스 특성 분석)

  • Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Seong-Yeop;Ryu, Myeong Seon;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.68-77
    • /
    • 2018
  • The purpose of this study was to isolate the probiotic lactic acid bacteria, and verify the possibility of the final selection strain as probiotic material. For screening of biogenic amines non-producing microorganisms, 42 lactic acid bacteria were isolated from various berries, extract and vinegar grown in Sunchang. Isolates were investigated for various physiological activities such as extracellular enzyme, antimicrobial and antioxidant activities, and 5 isolates were firstly screened. SBB07 was finally selected by analyzing the biogenic amine, and named Lactobacillus brevis SBB07 by 16S rRNA sequencing analysis. Next, SBB07 was assayed for their survival ability when exposed to acidic and bile conditions as well as heat and antibiotic resistance. As a result, SBB07 showed more than 86% and 54% higher survival rate in acidic condition at pH 2.0 and bile resistance with 0.5% oxgall. In addition, SBB07 showed a survival rate of more than 113% in $60^{\circ}C$, and also confirmed that it has resistant to various antibiotics. As a result of confirming the possibility of prebiotics, SBB07 showed the best utilization of GOS as a prebiotic substrate, and utilization of FOS and inulin were also high. These results suggest that SBB07 have good potential for application as probiotic lactic acid bacteria.

STUDIES ON THE EFFECT OF FURYL FURAMIDE (AF-2) ON KOREAN KIMCHI (Furyl furamide (AF-2)가 김치에 미치는 영향(影響))

  • Chung, Ho-Kwon
    • Applied Biological Chemistry
    • /
    • v.12
    • /
    • pp.57-67
    • /
    • 1969
  • 1) Many bacterial strains identified as Bacillus megeterium, Bacillus subtilis and Bacillus licheniformis were aboundantly found in summer jokal kimchi, but the most dominant strains in summer kimchi were Lactobacillus plantarum and Loctobacllus buchneri. 2) Bacillus groups found in kimchi were sensitive in a low concentration of AF-2, but groups of lactic acid bacteria were resistant to a high concentration of AF-2. 3) Allowable concentration of AF-2 in Korean kimchi is less than 10 p.p.m. 4) AF-2 was not suitable for the juicy kimchi as a preservative because the color of juicy kimchi was somewhat changed into orange red when 10 p.p.m. of AF-2 was added. 5) High concentration of AF-2 leads the hetero-fermentation of kimchi bacteria to the homofermentation. 6) Microflora of kimchi was influenced even in the concentration of 10 p.p.m. but it was impossible to check the acidification of kimchi in summer with 50 p.p.m. concentration of AF-2. 7) About 25% of AF-2 was consumed in kimchi fermentation for day at $23^{\circ}-25^{\circ}C$.

  • PDF

Isolation of indigenous Lactobacillus plantarum for malolactic fermentation (말로락틱 발효에 적합한 토착 Lactobacillus plantarum 분리)

  • Heo, Jun;Lee, Chan-Mi;Park, Moon Kook;Jeong, Do-Youn;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.169-176
    • /
    • 2015
  • The malolactic fermentation (MLF), which is widely used in winemaking, is the conversion of malic acid to lactic acid conducted by the malolactic enzyme (Mle) of lactic acid bacteria. In order to select the strains with MLF among 54 lactic acid bacteria isolated from the traditionally fermented foods, we designed a primer set that specifically targets the conserved regions of the mle gene and then selected four strains that harbor the mle gene of Lactobacillus plantarum. All strains were identified as L. plantarum by analyzing the 16S rRNA sequences, biochemical properties, and the PCR products of the recA gene. From comparison of the mle gene sequences consisting of 1,644 bp, the nucleotide and amino acid sequence of strain JBE60 correspond to 96.7% and 99.5% with those of other three strains, respectively. The strain JBE60 showed the highest resistant against 10% (v/v) ethanol among the strains. The strains lowered the concentration of malic acid to average 43%. Considering the ethanol resistance and conversion of malic acid, the strain JBE60 is considered as a potential starter for the malolactic fermentation.

Interaction with Polyphenols and Antibiotics (폴리페놀 화합물과 항생제의 상호작용)

  • Cho, Ji Jong;Kim, Hye Soo;Kim, Chul Hwan;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.476-481
    • /
    • 2017
  • Polyphenols are secondary metabolites produced by higher plants and have been used as antiallergic, anticancer, antihypertensive, antiinflammatory, antimicrobial and antioxidant agents. They are generally divided into flavonoids and non-flavonoids. The antimicrobial activity of flavonoids are stronger than that of non-flavonoids. The skeleton structures of flavonoids possessing antimicrobial activity are chalcone, flavan-3-ol (catechin), flavanone, flavone, flavonol and proanthocyanidin. The flavonols are shown antibacterial activity against several gram-positive bacteria (Actinomyces naeslundii, Lactobacillus acidophilus and Staphylococcus aureus) and gram-negative bacteria (Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella melaninogenica and Prevotella oralis). Among of non-flavonoids, caffeic acids, ferulic acids and gallic acids showed antimicrobial activity against gram-positive (Listeria monocytogenes and S. aureus) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). These are found to be more efficient against the E. coli, L. monocytogenes, P. aeruginosa and S. aureus than antibiotics such as gentamicin and streptomycin. The kaempferol and quercetin showed synergistic effect with ciprofloxacin and rifampicin against S. aureus and methicillin resistant S. aureus (MRSA). Epigallocatechin gallate (EGCG) acts synergistically with various ${\beta}-lactam$ antibiotics against MRSA. In particular, the epicatechin, epigallocatechin (EGC), EGCG and gallocatechin gallate from Korean green tea has antibacterial activity against MRSA clinical isolates and the combination of tea polyphenols and oxacillin was synergistic for all the clinical MRSA isolates.

Isolation and Characterization of Plant-Derived Lactic Acid Bacteria as Potential Probiotic (잠재적 생균제로서 식물 젖산균의 분리 및 특성)

  • Kim, Jeong-Do;Park, Sung-Bo;Lee, Na-Ri;Jeong, Jin-Ha;Lee, Hee-Seob;Hwang, Dae-Youn;Lee, Jong-Sup;Jeong, Seong-Yun;Son, Hong-Joo
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.308-312
    • /
    • 2011
  • Plant lactic acid bacteria were isolated from plant-associated fermentative foods and crops, and their probiotic properties were investigated. Isolates K27 and O2 were isolated from Kimchi and onion, and identified as Lactobacillus plantarum on the basis of 16S rRNA gene analysis. The two strains were highly resistant to acid (an MRS broth at pH 2.5), where the survival rates of L. plantarum K27 and L. plantarum O2 were 90.2% and 97.3%, respectively. L. plantarum K27 and L. plantarum O2 also showed high bile resistance to 0.5% oxgall, with a more than 70% survival rate. They showed an inhibitory effect against pathogenic strains of Escherichia coli KCCM 40880 and Pseudomonas aeruginosa ATCC 10145. The antibacterial effect of the two strains was probably due to the presence of lactic acid. ACE inhibitory activities of the two strains ranged from 72.8% to 80.6% in MRS broth. Notably, the two strains showed high ACE inhibitory activity (89.2~98.2%) in MRS broth containing 10% skim milk. Antioxidant activity was tested by DPPH radical scavenging activity, with antioxidant activities of the strains being in the range of 56.8~61.5%. The results obtained in this study suggest that L. plantarum K27 and L. plantarum O2 may be potential probiotic starter cultures with applications with fermentative products.

Antibacterial Effect of Immunoglobulin alone and in Combination with Ciprofloxacin against Pseudomonas aeruginosa (면역 글로불린 단독 및 Ciprofloxacin 병용에 의한 Pseudomonas aeruginosa에 대한 항균 효과)

  • Sung, Yeul-Oh;Kim, Hee-Sun;Jeon, Tae-Il;Kim, Sung-Kwang
    • Journal of Yeungnam Medical Science
    • /
    • v.8 no.1
    • /
    • pp.53-62
    • /
    • 1991
  • Experiments were performed in mice(Balb/C) to support the basic efficacy of the human immunoglobulin (IgG) preparation. The antibacterial activity of IgG purified from human sera was examined with or without the quinolone agent, ciprofloxacin(CPFX), against Pseudomonas aeruginosa isolated from clinical specimens. Results were as follows: Antibacterial activities in terms of the percentage of survivors, after administration of Ps. aeruginosa into mouse intraperitoneal cavity were in the following order, single IgG group, CPFX administration after IgG pretreatment group, IgG and CPFX combined administration group and CPFX alone group. The number of living bacteria was monitored in blood and liver tissue of mice infected with Ps. aeriginosa and treated by IgG administration. The increase of living bacteria in liver was more drastic than that in blood. Leukocytosis was observed in mice injected with IgG, excluding those only with ciprofloxacin, after 8 hours of administration to see a decrease to normal number of bacteria after 18 hours. No significant difference was noticed between pretreatment group and post treatment group. In vitro susceptibility test of IgG against Ps. aeruginosa, minimal inhibitory concentration(MIC) was $250{\mu}g/ml$, resistant to IgG, regardless of a combined administration with CPFX. In vitro test revealed that the IgG itself did not have anti-Ps. aeruginosa activity.

  • PDF