• 제목/요약/키워드: Resistance random access memory

검색결과 60건 처리시간 0.029초

PRAM 용 GST계 상변화 박막의 조성에 따른 특성 (Properties of GST Thin Films for PRAM with Composition)

  • 장낙원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.707-712
    • /
    • 2005
  • PRAM (Phase change random access memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change materials have been researched in the field of optical data storage media. Among the phase change materials. $Ge_2Sb_2Te_5$ is very well known for its high optical contrast in the state of amorphous and crystalline. However the characteristics required in solid state memory are quite different from optical ones. In this study. the structural Properties of GeSbTe thin films with composition were investigated for PRAM. The 100-nm thick $Ge_2Sb_2Te_5$ and $Sb_2Te_3$ films were deposited on $SiO_2/Si$ substrates by RF sputtering system. In order to characterize the crystal structure and morphology of these films. x-ray diffraction (XRD). atomic force microscopy (AFM), differential scanning calorimetry (DSC) and 4-point measurement analysis were performed. XRD and DSC analysis result of GST thin films indicated that the crystallization of $Se_2Sb_2Te_5$ films start at about $180^{\circ}C$ and $Sb_2Te_3$ films Start at about $125^{\circ}C$.

Ge25Se75-based ReRAM 소자의 전계에 의한 저항 변화에 대한 연구 (Field-induced Resistive Switching in Ge25Se75-based ReRAM Device)

  • 김장한;남기현;정홍배
    • 한국전기전자재료학회논문지
    • /
    • 제25권3호
    • /
    • pp.182-186
    • /
    • 2012
  • Resistance-change Random Access Memory(ReRAM) memory, which utilizes electrochemical control of metal in thin films of solid electrolyte, shows great promise as a future solid state memory. The technology utilizes the electrochemical formation and removal of metallic pathways in thin films of solid electrolyte. Key attributes are low voltage and current operation, excellent scalability, and a simple fabrication sequence. In this work, we investigated the nature of thin films formed by photo doping of $Ag^+$ ions into chalcogenide materials for use in solid electrolyte of Resistance-change RAM devices and switching characteristics according to field-effect.

Electrical Characteristics of PRAM Cell with Nanoscale Electrode Contact Size

  • 남기현;윤영준;맹광석;김경미;김정은;정홍배
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.282-282
    • /
    • 2011
  • Low power consuming operation of phase-change random access memory (PRAM) can be achieved by confining the switching volume of phase change media into nanometer scale. Ge2Sb2Te5 (GST) is one of the best materials for the phase change random access memory (PRAM) because the GST has two stable states, namely, high and low resistance values, which correspond to the amorphous and crystalline phases of GST, respectively. However, achieving the fast operation speed at lower current requires an alternative chalcogenide material to replace the GST and shrinking the dimension of programmable volume. In this paper, we have fabricated nanoscale contact area on Ge2Sb2Te5 thin films with trimming process. The GST material was fabricated by melt quenching method and the GST thin films were deposited with thickness of 100 nm by the electron beam evaporation system. As a result, the reset current can be safely scaled down by reducing the device contact area and we could confirmed the phase-change characteristics by applying voltage pulses.

  • PDF

W 도핑된 ZnO 박막을 이용한 저항 변화 메모리 특성 연구

  • 박소연;송민영;홍석만;김희동;안호명;김태근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.410-410
    • /
    • 2013
  • Next-generation nonvolatile memory (NVM) has attracted increasing attention about emerging NVMs such as ferroelectric random access memory, phase-change random access memory, magnetic random access memory and resistance random access memory (RRAM). Previous studies have demonstrated that RRAM is promising because of its excellent properties, including simple structure, high speed and high density integration. Many research groups have reported a lot of metal oxides as resistive materials like TiO2, NiO, SrTiO3 and ZnO [1]. Among them, the ZnO-based film is one of the most promising materials for RRAM because of its good switching characteristics, reliability and high transparency [2]. However, in many studies about ZnO-based RRAMs, there was a problem to get lower current level for reducing the operating power dissipation and improving the device reliability such an endurance and an retention time of memory devices. Thus in this paper, we investigated that highly reproducible bipolar resistive switching characteristics of W doped ZnO RRAM device and it showed low resistive switching current level and large ON/OFF ratio. This may be caused by the interdiffusion of the W atoms in the ZnO film, whch serves as dopants, and leakage current would rise resulting in the lowering of current level [3]. In this work, a ZnO film and W doped ZnO film were fabricated on a Si substrate using RF magnetron sputtering from ZnO and W targets at room temperature with Ar gas ambient, and compared their current levels. Compared with the conventional ZnO-based RRAM, the W doped ZnO ReRAM device shows the reduction of reset current from ~$10^{-6}$ A to ~$10^{-9}$ A and large ON/OFF ratio of ~$10^3$ along with self-rectifying characteristic as shown in Fig. 1. In addition, we observed good endurance of $10^3$ times and retention time of $10^4$ s in the W doped ZnO ReRAM device. With this advantageous characteristics, W doped ZnO thin film device is a promising candidates for CMOS compatible and high-density RRAM devices.

  • PDF

Resistive Switching Characteristics of Ag Doped Ge0.5Se0.5 Solid Electrolyte

  • Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.478-478
    • /
    • 2013
  • Resistance-change Random Access Memory (ReRAM) memory, which utilizes electrochemical control of metal in thin films of solid electrolyte, shows great promise as a future solid state memory. The technology utilizes the electrochemical formation and removal of metallic pathways in thin films of solid electrolyte. Key attributes are low voltage and current operation, excellent scalability, and a simple fabrication sequence. In this work, we investigated the nature of thin films formed by photo doping of Ag+ ions into chalcogenide materials for use in solid electrolyte of Resistance-change RAM devices and switching characteristics.

  • PDF

상온에서 RF 스퍼터링 방법으로 증착한 Hafnium Oxide 박막의 저항 변화 특성 (Resistive Switching Characteristics of Hafnium Oxide Thin Films Sputtered at Room Temperature)

  • 한용;조경아;윤정권;김상식
    • 한국전기전자재료학회논문지
    • /
    • 제24권9호
    • /
    • pp.710-712
    • /
    • 2011
  • In this study, we fabricate resistive switching random access memory (ReRAM) devices constructed with a Al/$HfO_2$/ITO structure on glass substrates and investigate their memory characteristics. The hafnium oxide thin film used as a resistive switching layer is sputtered at room temperature in a sputtering system with a cooling unit. The Al/$HfO_2$/ITO device exhibits bipolar resistive switching characteristics, and the ratio of the high resistance (HRS) to low resistance states (LRS) is more than 60. In addition, the resistance ratio maintains even after $10^4$ seconds.

MRAM Technology for High Density Memory Application

  • Kim, Chang-Shuk;Jang, In-Woo;Lee, Kye-Nam;Lee, Seaung-Suk;Park, Sung-Hyung;Park, Gun-Sook;Ban, Geun-Do;Park, Young-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권3호
    • /
    • pp.185-196
    • /
    • 2002
  • MRAM(magnetic random access memory) is a promising candidate for a universal memory with non-volatile, fast operation speed and low power consumption. The simplest architecture of MRAM cell is a combination of MTJ(magnetic tunnel junction) as a data storage part and MOS transistor as a data selection part. This article will review the general development status of MRAM and discuss the issues. The key issues of MRAM technology as a future memory candidate are resistance control and low current operation for small enough device size. Switching issues are controllable with a choice of appropriate shape and fine patterning process. The control of fabrication is rather important to realize an actual memory device for MRAM technology.

고성능 플래시 메모리 솔리드 스테이트 디스크 (A High Performance Flash Memory Solid State Disk)

  • 윤진혁;남이현;성윤제;김홍석;민상렬;조유근
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권4호
    • /
    • pp.378-388
    • /
    • 2008
  • 플래시 메모리는 전력 소모가 작고 충격과 진동에 강하며 크기가 작다는 특성 때문에 최근 노트북이나 UMPC(Ultra Mobile PC)와 같은 이동 컴퓨팅 시스템에서 하드디스크를 대체할 대용량 저장 매체로서 주목 받고 있다. 플래시 메모리에 기반한 저장 장치는 일반적으로 랜덤 읽기 성능이나 순차 읽기, 순차 쓰기 성능이 매우 좋은데 비해, 덮어쓰기가 불가능한 플래시 메모리의 물리적인 제약으로 인하여 소량의 랜덤 쓰기 성능은 떨어진다. 본 논문은 이 문제를 해결하기 위한 두 가지 중요한 특징을 갖는 SSD(Solid State Disk) 아키텍처를 제안하였다. 첫 번째로 비휘발성 이면서도 SRAM과 동일한 인터페이스로 덮어쓰기가 가능한 작은 크기의 FRAM(Ferroelectric RAM)을 NAND 플래시 메모리와 함께 사용하여 소량 쓰기 오버헤드를 최소화하였다. 두 번째, 호스트 쓰기 요청들도 소량 랜덤 쓰기와 대량 순차 쓰기로 분류하여 각각에 대해 최적의 쓰기 버퍼 관리 방법을 적용하였다. 평가 보드 상에서 SSD 프로토타입을 구현하고 PC 사용 환경의 워크로드에 기반한 벤치마크를 이용하여 성능을 평가해 본 결과 랜덤 패턴을 보이는 워크로드에서는 하드디스크나 기존의 상용 SSD들에 비해 처리율(throughput) 측면에서 3배 이상의 성능을 보였다.

RTP 어닐과 추가 이온 주입에 의한 저-저항 텅스텐 비트-선 구현 (Low-resistance W bit-line implementation with RTP anneal & additional ion implantation)

  • 이천희
    • 대한전자공학회논문지SD
    • /
    • 제38권5호
    • /
    • pp.63-63
    • /
    • 2001
  • 디바이스의 크기가 0.25㎛이하로 축소됨에 따라 DRAM(Dynamic Random Access Memory) 제조업체들은 칩 크기를 줄이고 지역적인 배선으로 사용하기 위해서 기존의 텅스텐-폴리사이드 비트-선에서 텅스텐 비트-선으로 대체하고 있다. 본 논문에서는 다양한 RTP 온도와 추가 이온주입을 사용하여 낮은 저항을 갖는 텅스텐 비트-선 제조 공정에 대해 다루었다. 그 결과 텅스텐 비트선 저항에 중요한 메계변수는 RTP Anneal 온도와 BF₂ 이온 주입 도펀트임을 알 수 있었다. 이러한 텅스텐 비트-선 공정은 고밀도 칩 구현에 중요한 기술이 된다.

Embedded Object-Oriented Micromagnetic Frame (OOMMF) for More Flexible Micromagnetic Simulations

  • Kim, Hyungsuk;You, Chun-Yeol
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.491-495
    • /
    • 2016
  • We developed an embedded Object-Oriented Micromagnetic Frame (OOMMF) script schemes for more flexible simulations for complex and dynamic mircomagnetic behaviors. The OOMMF can be called from any kind of softwares by system calls, and we can interact with OOMMF by updating the input files for next step from the output files of the previous step of OOMMF. In our scheme, we set initial inputs for OOMMF simulation first, and run OOMMF for ${\Delta}t$ by system calls from any kind of control programs. After executing the OOMMF during ${\Delta}t$, we can obtain magnetization configuration file, and we adjust input parameters, and call OOMMF again for another ${\Delta}t$ running. We showed one example by using scripting embedded OOMMF scheme, tunneling magneto-resistance dependent switching time. We showed the simulation of tunneling magneto-resistance dependent switching process with non-uniform current density using the proposed framework as an example.