• Title/Summary/Keyword: Resistance memory

Search Result 255, Processing Time 0.025 seconds

Nonvolatile Memory and Photovoltaic Devices Using Nanoparticles

  • Kim, Eun Kyu;Lee, Dong Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.79-79
    • /
    • 2013
  • Quantum-structures with nanoparticles have been attractive for various electronic and photonic devices [1,2]. In recent, nonvolatile memories such as nano-floating gate memory (NFGM) and resistance random access memory (ReRAM) have been studied using silicides, metals, and metal oxides nanoparticles [3,4]. In this study, we fabricated nonvolatile memories with silicides (WSi2, Ti2Si, V2Si) and metal-oxide (Cu2O, Fe2O3, ZnO, SnO2, In2O3 and etc.) nanoparticles embedded in polyimide matrix, and photovoltaic device also with SiC nanoparticles. The capacitance-voltageand current-voltage data showed a threshold voltage shift as a function of write/erase voltage, which implies the carrier charging and discharging into the metal-oxide nanoparticles. We have investigated also the electrical properties of ReRAM consisted with the nanoparticles embedded in ZnO, SiO2, polyimide layer on the monolayered graphene. We will discuss what the current bistability of the nanoparticle ReRAM with monolayered graphene, which occurred as a result of fully functional operation of the nonvolatile memory device. A photovoltaic device structure with nanoparticles was fabricated and its optical properties were also studied by photoluminescence and UV-Vis absorption measurements. We will discuss a feasibility of nanoparticles to application of nonvolatile memories and photovoltaic devices.

  • PDF

Seismic behavior of steel column-base-connection equipped by NiTi shape memory alloy

  • Jamalpour, Reza;Nekooei, Masoud;Moghadam, Abdolreza Sarvghad
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.109-120
    • /
    • 2017
  • The behavior of moment resistant steel structures depends on both the beam-column connections and columns foundations connections. Obviously, if the connections can meet the adequate ductility and resistance against lateral loads, the seismic capacity of these structures will be linked practically to the performance of these connections. The shape memory alloys (SMAs) have been most recently used as a means of energy dissipation in buildings. The main approach adopted by researchers in the use of such alloys is firstly bracing, and secondly connecting the beams to columns. Additionally, the behavior of these alloys is modeled in software applications rarely involving equivalent torsional springs and column-foundation connections. This paper attempts to introduce the shape memory alloys and their applications in steel structural connections, proposing a new steel column-foundation connection, not merely a theoretical model but practically a realistic and applicable model in structures. Moreover, it entails the same functionality as macro modeling software based on real behavior, which can use different materials to establish a connection between the columns and foundations. In this paper, the suggested steel column-foundation connection was introduced. Moreover, exploring the seismic dynamic behavior under cyclic loading protocols and the famous earthquake records with different materials such as steel and interconnection equipment by superelastic shape memory alloys have been investigated. Then, the results were compared to demonstrate that such connections are ideal against the seismic behavior and energy dissipation.

Properties of GST Thin Films for PRAM with Composition (PRAM 용 GST계 상변화 박막의 조성에 따른 특성)

  • Jang Nak-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.707-712
    • /
    • 2005
  • PRAM (Phase change random access memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change materials have been researched in the field of optical data storage media. Among the phase change materials. $Ge_2Sb_2Te_5$ is very well known for its high optical contrast in the state of amorphous and crystalline. However the characteristics required in solid state memory are quite different from optical ones. In this study. the structural Properties of GeSbTe thin films with composition were investigated for PRAM. The 100-nm thick $Ge_2Sb_2Te_5$ and $Sb_2Te_3$ films were deposited on $SiO_2/Si$ substrates by RF sputtering system. In order to characterize the crystal structure and morphology of these films. x-ray diffraction (XRD). atomic force microscopy (AFM), differential scanning calorimetry (DSC) and 4-point measurement analysis were performed. XRD and DSC analysis result of GST thin films indicated that the crystallization of $Se_2Sb_2Te_5$ films start at about $180^{\circ}C$ and $Sb_2Te_3$ films Start at about $125^{\circ}C$.

Flowable oxide CVD Process for Shallow Trench Isolation in Silicon Semiconductor

  • Chung, Sung-Woong;Ahn, Sang-Tae;Sohn, Hyun-Chul;Lee, Sang-Don
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • We have proposed a new shallow trench isolation (STI) process using flowable oxide (F-oxide) chemical vapor deposition (CVD) for DRAM application and it was successfully developed. The combination of F-oxide CVD and HDP CVD is thought to be the superior STI gap-filling process for next generation DRAM fabrication because F-oxide not only improves STI gap-filling capability, but also the reduced local stress by F-oxide in narrow trenches leads to decrease in junction leakage and gate induced drain leakage (GIDL) current. Finally, this process increased data retention time of DRAM compared to HDP STI. However, a serious failure occurred by symphonizing its structural dependency of deposited thickness with poor resistance against HF chemicals. It could be suppressed by reducing the flow time during F-oxide deposition. It was investigated collectively in terms of device yield. In conclusion, the combination of F-oxide and HDP oxide is the very promising technology for STI gap filling process of sub-100nm DRAM technology.

A study on the electrical switching properties of oxide metal (산화금속의 전기적 스위칭 특성 연구)

  • Choi, Sung-Jai;Lee, Won-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.173-178
    • /
    • 2009
  • We have investigated the electrical properties of oxide metal thin film device. The device has been fabricated top-top electrode structure and its transport properties are measured in order to study the resistance change. Electrical properties with linear voltage sweep on a electrodes are used to show the variation of resistance of oxide metal thin film device. Fabricated oxide metal thin film device with MIM structure is changed from a low conductive Off-state to a high conductive On-state by the external linear voltage sweep. The $Si/SiO_2/MgO$ device is switched from a high resistance state to a low resistance state by forming. Consequently, we believe oxide metal is a promising material for a next-generation nonvolatile memory and other electrical applications.

  • PDF

Evaluation of Multi-Level Memory Characteristics in Ge2Sb2Te5/TiN/W-Doped Ge2Sb2Te5 Cell Structure (Ge2Sb2Te5/TiN/W-Doped Ge2Sb2Te5 셀 구조의 다중준위 메모리 특성 평가 )

  • Jun-Hyeok Jo;Jun-Young Seo;Ju-Hee Lee;Ju-Yeong Park;Hyun-Yong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.88-93
    • /
    • 2024
  • To evaluate the possibility as a multi-level memory medium for the Ge2Sb2Te5/TiN/W-doped Ge2Sb2Te5 cell structure, the crystallization rate and stabilization characteristics according to voltage (V)- and current (I)- pulse sweeping were investigated. In the cell structures prepared by a magnetron sputtering system on a p-type Si (100) substrate, the Ge2Sb2Te5 and W-doped Ge2Sb2Te5 thin films were separated by a barrier metal, TiN, and the individual thicknesses were varied, but the total thickness was fixed at 200 nm. All cell structures exhibited relatively stable multi-level states of high-middle-low resistance (HR-MR-LR), which guarantee the reliability of the multilevel phase-change random access memory (PRAM). The amorphousto-multilevel crystallization rate was evaluated from a graph of resistance (R) vs. pulse duration (T) obtained by the nanoscaled pulse sweeping at a fixed applied voltage (12 V). For all structures, the phase-change rates of HR→MR and MR→LR were estimated to be approximately t<20 ns and t<40 ns, respectively, and the states were relatively stable. We believe that the doublestack structure of an appropriate Ge-Sb-Te film separated by barrier metal (TiN) can be optimized for high-speed and stable multilevel PRAM.

An Electrical Repair Circuit for Yield Increment of High Density Memory (고집적 메모리의 yield 개선을 위한 전기적 구제회로)

  • 김필중;김종빈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.273-279
    • /
    • 2000
  • Electrical repair method which has replaced laser repair method can replace defective cell by redundancy’s in the redundancy scheme of conventional high density memory. This electrical repair circuit consists of the antifuse program/read/latch circuits, a clock generator a negative voltage generator a power-up pulse circuit a special address mux and etc. The measured program voltage of made antifuses was 7.2~7.5V and the resistance of programmed antifuses was below 500 Ω. The period of clock generator was about 30 ns. The output voltage of a negative voltage generator was about 4.3 V and the current capacity was maximum 825 $mutextrm{A}$. An antifuse was programmed using by the electric potential difference between supply-voltage (3.3 V) and output voltage generator. The output pulse width of a power-up pulse circuit was 30 ns ~ 1$mutextrm{s}$ with the variation of power-up time. The programmed antifuse resistance required below 44 ㏀ from the simulation of antifuse program/read/latch circuit. Therefore the electrical repair circuit behaved safely and the yield of high densitymemory will be increased by using the circuit.

  • PDF

Fabrication of PMMA-HfOx Organic-Inorganic Hybrid Resistive Switching Memory (PMMA-HfOx 유-무기 하이브리드 저항변화 메모리 제작)

  • Baek, Il-Jin;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, we developed the solution-processed PMMA-$HfO_x$ hybrid ReRAM devices to overcome the respective drawbacks of organic and inorganic materials. The performances of PMMA-$HfO_x$ hybrid ReRAM were compared to those of PMMA- and $HfO_x$-based ReRAMs. Bipolar resistive switching behavior was observed from these ReRAMs. The PMMA-$HfO_x$ hybrid ReRAMs showed a larger operation voltage margin and memory window than PMMA-based and $HfO_x$-based ReRAMs. The reliability and electrical instability of ReRAMs were remarkably improved by blending the $HfO_x$ into PMMA. An Ohmic conduction path was commonly generated in the LRS (low resistance state). In HRS (high resistance state), the PMMA-based ReRAM showed SCLC (space charge limited conduction). the PMMA-$HfO_x$ hybrid ReRAM and $HfO_x$-based ReRAM revealed the Pool-Frenkel conduction. As a result of flexibility test, serious defects were generated in $HfO_x$ film deposited on PI (polyimide) substrate. On the other hand, the PMMA and PMMA-$HfO_x$ films showed an excellent flexibility without defect generation.

Oxidation Behavior of Ti1-xAlxN Barrier Layer for Memory Devices (메모리소자를 위한 Ti1-xAlxN 방지막의 산화 거동)

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.718-723
    • /
    • 2002
  • $Ti_{1-x}$ $Al_{ x}$N thin films as barrier layer for memory devices application were deposited by reactive magnetron sputtering. The crystallinity, micro-structure, oxidation resistance and oxidation mechanism of films were investigated as a function of Al content. Lattice parameter and grain size of thin films were decreased with increasing the Al content Oxidation of the film with higher Al content is slow and then, total oxide thickness is thinner than that of lower Al content film. Oxide layer formed on the surface is AlTiNO layer. Oxidation of $Ti_{1-x}$ /$Al_{x}$ N barrier layer is diffusion limited process and thickness of oxide layer with oxidation time increased with a parabolic law. The activation energy of oxygen diffusion, Ea and diffusion coefficient, D of $Ti_{0.74}$ /X$0.74_{0.26}$N film is 2.1eV and $10^{-16}$ ~$10^{-15}$ $\textrm{cm}^2$/s, respectively. $_Ti{1-x}$ /$Al_{x}$ XN barrier layer showed good oxidation resistance.