DOI QR코드

DOI QR Code

Oxidation Behavior of Ti1-xAlxN Barrier Layer for Memory Devices

메모리소자를 위한 Ti1-xAlxN 방지막의 산화 거동

  • Park, Sang-Shik (Dept. of Materials Sceince and Engineering, Sangju Mational University)
  • Published : 2002.09.01

Abstract

$Ti_{1-x}$ $Al_{ x}$N thin films as barrier layer for memory devices application were deposited by reactive magnetron sputtering. The crystallinity, micro-structure, oxidation resistance and oxidation mechanism of films were investigated as a function of Al content. Lattice parameter and grain size of thin films were decreased with increasing the Al content Oxidation of the film with higher Al content is slow and then, total oxide thickness is thinner than that of lower Al content film. Oxide layer formed on the surface is AlTiNO layer. Oxidation of $Ti_{1-x}$ /$Al_{x}$ N barrier layer is diffusion limited process and thickness of oxide layer with oxidation time increased with a parabolic law. The activation energy of oxygen diffusion, Ea and diffusion coefficient, D of $Ti_{0.74}$ /X$0.74_{0.26}$N film is 2.1eV and $10^{-16}$ ~$10^{-15}$ $\textrm{cm}^2$/s, respectively. $_Ti{1-x}$ /$Al_{x}$ XN barrier layer showed good oxidation resistance.

Keywords

References

  1. C. Carney and D. Durham, J. Vac. Sci. Technol., A 17, 2850 (1999) https://doi.org/10.1116/1.581952
  2. J. Laimer, H. Stori and P. Rodhammer, Thin Solid Films, 191 , 77 (1990) https://doi.org/10.1016/0040-6090(90)90276-J
  3. J.S. Chun, 1. Petrov and J.E. Greene, J. Appl. Phys., 86 (7) 3633 (1999) https://doi.org/10.1063/1.371271
  4. N. Yokoyama, K. Hinode and Y. Homma, J. Electrochem. Soc., 138,190 (1991) https://doi.org/10.1149/1.2085535
  5. R.I. Hedge, R.W. Fiordalice, E.O. Travis, and P. J. Tobin, J. Vac. Sci. Technol., B11,1287 (1993) https://doi.org/10.1116/1.586931
  6. S. Onishi, K. Ishihara, K. Ito, J. Kudo and K. Sakiyama, IEEE IEDM, 94, 843 (1994) https://doi.org/10.1109/IEDM.1994.383281
  7. J. Kourtev and R. Pascova, Vacuum, 47(10), 1197 (1996) https://doi.org/10.1016/0042-207X(96)00195-9
  8. O. Knotek, W.D. Munz and T. Leyendecker, J. Vac. Sci. Technol., A5(4), 2173 (1987) https://doi.org/10.1116/1.574948
  9. O. Knotek, M. Bohmer and T. Leyendecker, J. Vac. Sci. Technol., A4 (6), 2695 (1986) https://doi.org/10.1116/1.573708
  10. E. Vancoille, J.P. Celis and J.R. Roos, Thin Solid Films, 224, 168 (1993) https://doi.org/10.1016/0040-6090(93)90428-R
  11. M. Zhou, Y. Makino, M. Nose and K. Nogi, Thin Solid Films, 339, 203 (1999) https://doi.org/10.1016/S0040-6090(98)01364-9
  12. M.C. Hugon, J.M. Desvignes, B. Agius, to. Vickridge, D.J. Kim and A.I. Kingon, Nucl. Instr. and Meth., B161-163,578 (2000) https://doi.org/10.1016/S0168-583X(99)00953-2
  13. J.S. Schuster and J. Bauer, J. Solid State Chem., 53, 260 (1984) https://doi.org/10.1016/0022-4596(84)90100-2
  14. U. Wahlstr m, L. Hultman, J.E. Sundgren, F. Adibi, I. Petrov, and J.E. Greene, Thin Solid Films, 235, 62, (1993) https://doi.org/10.1016/0040-6090(93)90244-J
  15. Y. Tanaka, J. Vac. Sci. Technol., A10, 1749 (1992) https://doi.org/10.1116/1.577742
  16. K.H. Kim and S.H. Lee, Thin Solid Films, 283, 165 (1996) https://doi.org/10.1016/0040-6090(96)08766-4
  17. S.H. Lee, B.J. Kim, H.H. Kim and J.J. Lee, J. Appl, Phys., 80 (3), 1469 (1996) https://doi.org/10.1063/1.363015
  18. M. Wittmer, J. Noser and H. Melchior, J. Appl. Phys., 52 (11),6659 (1981) https://doi.org/10.1063/1.328659
  19. D. Mclntyre, J.E. Greene, G. Hakansson, J. E. Sundgren and W. D. Munz, J. Appl. Phys., 67 (3), 1542 (1990) https://doi.org/10.1063/1.345664
  20. S. Hofmann, Thin Solid Films, 193-194, 648 (1990) https://doi.org/10.1016/0040-6090(90)90216-Z
  21. T. Ikeda and H. Satoh, Thin Solid Films, 195, 99 (1991) https://doi.org/10.1016/0040-6090(91)90262-V