• Title/Summary/Keyword: Resistance error

Search Result 433, Processing Time 0.024 seconds

The Measurement of the Grounding Resistance Using the Ground Current of the Distribution System (접지선 전류를 시험 전류원으로 활용한 접지저항 측정기법에 관한 연구)

  • Kang, Moon-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.293-295
    • /
    • 2004
  • Public utilities adopt the grounding rules ; class I, class II, class III and special class III, and install the grounding electrodes in distribution facilities. To keep the safety of the human and the facilities, Public utilities also manage the value of ground resistance in distribution system biennially. At present the Hook-On meter is normally used to measure the ground resistance although it has ${\pm}5[%]$ measuring error and it can not measure the exact value when the current is over 1[A]. In addition it is very difficult to use the fall-of-potential method in distribution system. In this paper we propose the new measurement method using ground current of distribution system as the current source.

  • PDF

Strength Estimation Model of Resistance Spot Welding in 780MPa Steel Sheet Using Simulation for High Efficiency Car Bodies (시뮬레이션을 이용한 고효율 차체용 780MPa급 강판의 저항 점 용접 강도 예측 모델 개발)

  • Son, Chang-Seok;Park, Young-Whan
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.70-77
    • /
    • 2015
  • Nowadays, car manufacturers applied many high strength steels such AHSS or UHSS to car bodies for weight lightening. Therefore, a variety of applied steel sheet to car bodies increased and the needs of simulation to evaluate weldability also increased in order to reduce the cost and time. In this study, resistance spot welding simulations for DP 780 Steel with 1.0 and 1.4 mm thickness were conducted with respect to lobe curve. 2 regression models to estimate tensile shear strength were suggested and they were second order polynomial regression model and optimized second order regression model. The performance of these models was evaluated in terms of the coefficient of determinant and average error rate.

OPTIMIZATION OF WELDING PARAMETERS FOR RESISTANCE SPOT WELDING OF TRIP STEEL USING RESPONSE SURFACE METHODOLOGY

  • Park, Hyunsung;Kim, Taehyung;Sehun Rhee
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.366-371
    • /
    • 2002
  • Because of the environmental problems, automotive companies are trying to reduce the weight of car body. Therefore, TRIP(TRansformation Induced Plasticity) steels, which have high strength and ductility have been developed. Welding process is a complex process; therefore deciding the optimal welding conditions on the basis of experimental data is an effective method. However, trial-and-error method to decide the optimal conditions requires too many experiments. To overcome these problems, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are used in the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. This method was applied to the resistance spot welding process of the TRIP steel to optimize the welding parameters.

  • PDF

SIMULTANEOUS SPEED AND ROTOR TIME CONSTANT IDENTIFICATION OF AN INDUCTION MOTOR DRIVE BASED ON THE MODEL REFERENCE ADAPTIVE SYSTEM COMBINED WITH A FUZZY RESISTANCE ESTIMATOR

  • Soltani, Jafar;Mizaeian, Behzad
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.11-16
    • /
    • 1998
  • In this paper, simultaneous estimation of rotor speed and time constant for a voltage source inverter (VSI) fed induction motor drive are disccussed. The theory is based on the Model Reference Adaptive System (MRAS). The identifier executes Simultaneous rotor speed and time constant so that vector control of the induction may be achieved in the rotor-flux oriented reference frame. Furthermore, to eliminate the offset error caused by the change in the stator resistance, a fuzzy resistance regulator is also designed which operates in parallel with the rotor speed and time constant identifier

  • PDF

Optimization of Welding Parameters for Resistance Spot Welding of Trip Steel Using Response Surface Methodology

  • Park, H.;Kim, T.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.47-50
    • /
    • 2002
  • Because of the environmental problems, automotive companies are trying to reduce the weight of car body. Therefore, TRIP(TRansformation Induced Plasticity) steels, which have high strength and ductility have been developed. Welding process is a complex process; therefore deciding the optimal welding conditions on the basis of experimental data is an effective method. However, trial-and-error method to decide the optimal conditions requires too many experiments. To overcome these problems, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are used in the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. This method was applied to the resistance spot welding process of the TRIP steel to optimize the welding parameters.

  • PDF

A Study on the development and calibration method of a modular internal resistance meter to improve the safety of reusable batteries

  • Mi-Jin Choi;Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.228-235
    • /
    • 2024
  • Battery use is increasing worldwide to achieve carbon neutrality and improve energy efficiency, but batteries are a finite resource and their application is determined by capacity and specifications. Battery performance deteriorates as the number of uses increases. A certain level of battery performance degradation has become an issue in the field of reuse and recycling, and various studies are being conducted on reuse to solve power shortages. Waste batteries from electric vehicles are suitable for building ESS based on reusable batteries, and for stable use, technical skills are needed to accurately predict battery life and determine status information. Predicting battery life and determining status information are difficult due to non-linearity due to internal structure or chemical changes. In this paper, we manufactured a modular internal resistance measuring device and compared the measured values with Hioki equipment to minimize the error rate through a correction method. As a result of testing Hioki equipment and modular measuring instruments to ensure efficiency and safety based on reusable batteries, an accuracy of over 95% was confirmed.

A method of dynamic error reduction for a sensor with first order lag using a digital convolution integrator

  • Kubota, Nobuhisa;Mine, Katsutoshi;Doi, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.530-533
    • /
    • 1993
  • This paper describes a new method of dynamic error compensation, using a digital convolution integrator and two digital low pass filters. In this method, the process of compensation consists of three steps. First, sampling and digitizing of input signal, second, removing the noise in sampled data by the low pass filter and third, making a convolution integral using the output data of low pass filters. This method showed a good experimental result of reducing dynamic error even if there was a slight noise in the input signal. As a result, the detecting time constant of resistance thermo-bulb was improved to about 1/10th.

  • PDF

Compensative Microstepping Based Position Control with Passive Nonlinear Adaptive Observer for Permanent Magnet Stepper Motors

  • Kim, Wonhee;Lee, Youngwoo;Shin, Donghoon;Chung, Chung Choo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1991-2000
    • /
    • 2017
  • This paper presents a compensative microstepping based position control with passive nonlinear adaptive observer for permanent magnet stepper motor. Due to the resistance uncertainties, a position error exists in the steady-state, and a ripple of position error appears during operation. The compensative microstepping is proposed to remedy this problem. The nonlinear controller guarantees the desired currents. The passive nonlinear adaptive observer is designed to estimate the phase resistances and the velocity. The closed-loop stability is proven using input to state stability. Simulation results show that the position error in the steady-state is removed by the proposed method if the persistent excitation conditions are satisfied. Furthermore, the position ripple is reduced, and the Lissajou curve of the phase currents is a circle.

Analysis and Improvement of Low-Frequency Control of Speed-Sensorless AC Drive Fed by Three-Level Inverter

  • Chang Jie (Jay)
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.358-365
    • /
    • 2005
  • In induction machine drive without a speed sensor, the estimation of the motor flux and speed often becomes deteriorated at low speeds with low back EMF. Our analysis shows that, in addition to the state resistance variation, the estimated value of field orientation angle is often corrupted by accumulative errors from the integration of voltage variables at motor terminals that have low signal/noise ratio at low frequencies. A repetitive loop path of integration in the feedback can amplify this type of error, thus speeding up the degradation process. The control system runs into information starvation due to the loss of correct field orientation. The machine's spiral vectors are controlled only in a reduced dimension in this situation. A novel control scheme is developed to improve the control performance of motor's current, torque and speed at low frequencies. The scheme gains a full-dimensional vector control and is less sensitive to the combined effect of the error sources at the low frequencies. Experimental tests demonstrate promising performances are achievable even below 0.5 Hz.

Effects of cutter runout on cutting forces during up-endmilling of Inconel718 (Inconel 718 상향 엔드밀링시 절삭력에 미치는 공구형상오차)

  • 이영문;양승한;장승일;백승기;김선일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.302-307
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during up-end milling of Inconel 718 using measured cutting forces. The specific cutting resistance, K. and $K_t$ are defined as the radial and tangential cutting forces divided by the modified chip section area. Both of $K_r$, and $K_t$ values become smaller as the helix angle increases from $30^\circ$ to $40^\circ$ Whereas they become larder as the helix angle increases from $40^\circ$ to $50^\circ$. On the other hand, the $K_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency becomes distinct with smaller helix angle.

  • PDF