• Title/Summary/Keyword: Resistance error

Search Result 429, Processing Time 0.027 seconds

The Maximum Efficiency Driving in IPMSM by Precise Estimation of Current Phase Angle

  • Cho, Gyu-Won;Kim, Cheol-Min;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1221-1226
    • /
    • 2013
  • In this paper, the equivalent circuit for the efficiency calculation by precise estimation of the linkage flux, inductance and iron loss resistance was calculated accurately. In addition, the driving characteristics according to the current phase angle are analyzed and the maximum efficiency point is calculated. And then, analyzed and experimental values of the efficiency were compared. So, causes of error were expected to be vibration and noise by harmonic distortion of the voltage and current, and mechanical loss of dynamometer. In addition, the driving characteristics according to the current phase angle are analyzed and the maximum efficiency point is calculated.

The Stablized Control Method for The Voltage Source Inverter Fed Induction Motor Driver (전압형 인버터로 구동되는 유도기의 안정화 제어)

  • Ro, S.C.;Lee, H.W.;Lee, O.G.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.567-570
    • /
    • 1989
  • A constant V/F control system of voltage contrlled PWM inverter has a unstable operation of the low- speed and the light-load. In this paper, the authors propose stability control with idealized operation of induction motor by the neglect of primary leakage inductance and resistance. Also ldealized operation system is adopted voltage error, feed back impedance circuit, and increasing resistance from dead time of switching is compensated by the soft ware with u-processors. The proposed simulation of the idealized control method is proved at the low-speed operation for three phase induction motor.

  • PDF

Large-Signal Output Equivalent Circuit Modeling for RF MOSFET IC Simulation

  • Hong, Seoyoung;Lee, Seonghearn
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.485-489
    • /
    • 2015
  • An accurate large-signal BSIM4 macro model including new empirical bias-dependent equations of the drain-source capacitance and channel resistance constructed from bias-dependent data extracted from S-parameters of RF MOSFETs is developed to reduce $S_{22}$-parameter error of a conventional BSIM4 model. Its accuracy is validated by finding the much better agreement up to 40 GHz between the measured and modeled $S_{22}$-parameter than the conventional one in the wide bias range.

Performance Analysis of the Rectangular Fin (사각 휜에 대한 성능해석)

  • Gang, Hyeong-Seok;Yun, Se-Chang;Lee, Seong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Performance of a rectangular fin is investigated by a three dimensional analytical method. Heat loss and the temperature obtained from the three dimensional analysis are compared with those calculated from a two dimensional analysis. Fin effectiveness, fin resistance and fin efficiency for the rectangular fin are presented as a function of non-dimensional fin length and fin width. The results are obtained in the following : (1) heat loss calculated from the two dimensional analysis is the same as that obtained from the three dimensional analysis with adiabatic boundary condition in z-direction, (2) heat loss obtained from the two dimensional analysis approaches the value for the three dimensional analysis as the non-dimensional fin width becomes large, (3) fin effectiveness increases as non-dimensional fin length increases and non-dimensional fin width decreases, and vice versa for fin efficiency.

Static and Dynamic Testing Technique of Inductor Short Turn

  • Piyarat, W.;Tipsuwanporn, V.;Tarasantisuk, C.;Kummool, S.;Im, T.Sum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.281-283
    • /
    • 1999
  • This topic presents an inductor short turn testing. From the rudimentary principles, the quality factor(Q) decreases due to inductor short turn. Frequency response varies because of the variation of circuit inductance and resistance. In general, short turn circuit testing is performed by comparing the ratio of an inductance and resistance of inductor in that particular circuit. An alternative method can be done by considering the response of second order circuit which can give both dynamic and static testing, whereas static testing give an error results not more than 2 turns. For dynamic testing, the result is more accurate, which can test fur the short turn number form 1 turn onward.

  • PDF

Interpretation of Antimicrobial Susceptibility Test According to Resistance Mechanism of ${\beta}$-lactam in Enterobacteriacae (장내세균에서 ${\beta}$-lactam 항균제의 내성기전별 항균제 감수성검사의 해석)

  • Lee, Chae-Hoon
    • Journal of Yeungnam Medical Science
    • /
    • v.27 no.1
    • /
    • pp.8-17
    • /
    • 2010
  • It is important to select appropriate antimicrobials for the treatment of infection according to the results of antimicrobial susceptibility tests (ASTs), yet the clinical isolates are sometimes susceptible to antibiotics that are clinically ineffective or this is due to technical error of the ASTs. So, interpretive reading of ASTs is needed and especially for the ${\beta}$-lactams for treating $Enterobacteriacae$. This review describes the interpretive reading of ASTs according to natural antimicrobial resistance and the mechanisms of mechanisms, with giving special attention to the antibiotics phenotypes for $Enterobacteriacae$. Further, as all the diffent tissues have a different antimicrobial concentration for identical antimicrobials, more information is needed on the antimicrobial tissue distribution for the appropriate treatment of infection. (ED note: I hope you send me the paper.)

  • PDF

Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

  • Seri, Osami
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.158-161
    • /
    • 2008
  • It is well known that iron is one of the most common impurity elements found in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as $FeAl_3$. The $FeAl_3$ particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of $FeAl_3$ particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting $FeAl_3$ free surface was an electrochemical treatment such as cathodic current density of $-2kAm^{-2}$ in a 20-30 mass% $HNO_3$ solution for the period of 300s. The corrosion characteristics of aluminum surface with $FeAl_3$ free particles are examined in a $0.1kmol/m^3$ NaCl solution. It is found that aluminum with free $FeAl_3$ particles shows higher corrosion resistance than aluminum with $FeAl_3$ particles.

The transient grounding impedance measurment of large grid grounding electrodes (대규모 그리드 접지전극의 과도접지임피던스의 측정)

  • Jeon, Byung-Wook;Lee, Su-Bong;Li, Feng;Lee, Seung-Ju;Jung, Dong-Cheol;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.69-72
    • /
    • 2008
  • This paper presents the transient and conventional grounding impedance behaviors of large grid grounding system associated with the injection point of impulse current The measurement methods consider two possible errors in the grounding-system impedances: (1) ground mutual resistance due to current flow through ground from the ground electrode to be measured to the current auxiliary, (2) ac mutual coupling between the current test lead and the potential test lead The test circuit was set to reduce the error factors. The transient grounding impedance depends on the rise time and injection point of impulse current It is effective that grounding conductor is connected to the center of the large grid grounding system.

  • PDF

The automatic measurement system of sheet resistance and resistivity of semiconductor and metals (반도체 및 금속의 면저항, 비저항 측정시스템의 자동화)

  • Ryu, Je-Cheon;Kim, Dong-Jin;Kang, Jeong-Hong;Kim, Kyu-Tae;Song, Yang-Sup;Yu, Kwang-Min
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2766-2768
    • /
    • 2000
  • We were made the automatic measurement system of sheet resistance and resistivity of semiconductor and metals with accuacy. The use of this system measured SRM(Standard Reference Materials) silicon wafers which calibrated by NIST. From this result. this system operated with the standard deviation within maximum ${\pm}$1% error.

  • PDF

Effect of the Current Probe Position on Ground Resistance Measurement Using Fall-of-Potential Method (전위강하법에 의한 접지저항 측정에 미치는 전류보조전극의 위치의 영향)

  • Lee, B.H.;Eom, J.H.;Kim, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1874-1876
    • /
    • 2000
  • In this paper, the effects of the positions of the current probe on the measurements of the ground resistanc, and potential gradients with fall-of-potential method are described, and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position of the measuring auxiliary probes. The ground resistance is calculated by applying the 61.8% lute using fall-of-potential method.

  • PDF