• Title/Summary/Keyword: Resistance Mechanism

검색결과 1,447건 처리시간 0.028초

Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures

  • Zhou, Zhiyong;Yang, Ting;Ding, Quanshun;Ge, Yaojun
    • Wind and Structures
    • /
    • 제20권5호
    • /
    • pp.643-660
    • /
    • 2015
  • The wind tunnel test of large-scale sectional model and computational fluid dynamics (CFD) are employed for the purpose of studying the aerodynamic appendices and mechanism on suppression for the vortex-induced vibration (VIV). This paper takes the HongKong-Zhuhai-Macao Bridge as an example to conduct the wind tunnel test of large-scale sectional model. The results of wind tunnel test show that it is the crash barrier that induces the vertical VIV. CFD numerical simulation results show that the distance between the curb and crash barrier is not long enough to accelerate the flow velocity between them, resulting in an approximate stagnation region forming behind those two, where the continuous vortex-shedding occurs, giving rise to the vertical VIV in the end. According to the above, 3 types of wind fairing (trapezoidal, airfoil and smaller airfoil) are proposed to accelerate the flow velocity between the crash barrier and curb in order to avoid the continuous vortex-shedding. Both of the CFD numerical simulation and the velocity field measurement show that the flow velocity of all the measuring points in case of the section with airfoil wind fairing, can be increased greatly compared to the results of original section, and the energy is reduced considerably at the natural frequency, indicating that the wind fairing do accelerate the flow velocity behind the crash barrier. Wind tunnel tests in case of the sections with three different countermeasures mentioned above are conducted and the results compared with the original section show that all the three different countermeasures can be used to control VIV to varying degrees.

Anti-collapse performance analysis of unequal span steel-concrete composite substructures

  • Meng, Bao;Li, Liangde;Zhong, Weihui;Tan, Zheng;Zheng, Yuhui
    • Steel and Composite Structures
    • /
    • 제39권4호
    • /
    • pp.383-399
    • /
    • 2021
  • In the study, three 1:3-scale unequal span steel-concrete composite substructures with top-seat angle and double web angle connection were designed and identified as specimens GTSDWA-0.6, GTSDWA-1.0, and GTSDWA-1.4. Pseudo-static tests and refined numerical model analysis were conducted to examine the anti-progressive collapse performance of a semi-rigid steel-concrete composite substructure. The results indicated that the failure modes of the three specimens revealed that the fracture occurred in the root of the long leg of the top/seat angle in tension at the connection. With increases in the span ratio of the left and right composite beams, the bearing capacities of the composite substructures decreased, and the corresponding displacement increased. With respect to GTSDWA-0.6 and GTSDWA-1.4, the resistance due to the short composite beam corresponded to 62% and 60%, respectively, and the total resistance provided by the short composite beam exceeded that of the long composite beam. With respect to GTSDWA-1.0, the resistance due to the left and right composite beams was similar. All three specimens underwent the flexure mechanism and flexure-axial mixed mechanism stages. They resisted the external load mainly via the flexure mechanism. Moreover, the addition of stiffeners on both sides of the top and seat angles is advantageous in terms of improving the collapse resistance and ductility of unequal span composite substructures.

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제20권1호
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

ANTIBIOTIC RESISTANCE MECHANISM

  • Lee, Yeon-Hee
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2000년도 Proceedings of 2000 KSAM International Symposium and Spring Meeting
    • /
    • pp.26-32
    • /
    • 2000
  • PDF

Plasma Resistance and Etch Mechanism of High Purity SiC under Fluorocarbon Plasma

  • Jang, Mi-Ran;Paek, Yeong-Kyeun;Lee, Sung-Min
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.328-332
    • /
    • 2012
  • Etch rates of Si and high purity SiC have been compared for various fluorocarbon plasmas. The relative plasma resistance of SiC, which is defined as the etch rate ratio of Si to SiC, varied between 1.4 and 4.1, showing generally higher plasma resistance of SiC. High resolution X-ray photoelectron analysis revealed that etched SiC has a surface carbon content higher than that of etched Si, resulting in a thicker fluorocarbon polymer layer on the SiC surface. The plasma resistance of SiC was correlated with this thick fluorocarbon polymer layer, which reduced the reaction probability of fluorine-containing species in the plasma with silicon from the SiC substrate. The remnant carbon after the removal of Si as volatile etch products augments the surface carbon, and seems to be the origin of the higher plasma resistance of SiC.

Screening and Isolation of Antibiotics Resistance Inhibitors from Herb Materials. V.- Resistance Inhibition by Acorenone from Acorus gramineus Solander

  • Kim, Hye-Kyung;Moon, Kyung-Ho;Lee, Chung-Kyu
    • Natural Product Sciences
    • /
    • 제6권1호
    • /
    • pp.36-39
    • /
    • 2000
  • Acorenone, a diterpene isolated from Acorus gramineus, showed strong resistance inhibitory activity against multi-drug resistant microorganisms such as Staphylococcus aureus SA2, which has resistance to 10 usual antibiotics including chloramphenicol (Cm). At the level of $5\;{\mu}g/ml$ when combined with $50\;{\mu}g/ml$ of Cm. Bacterial resistance to Cm is due to the presence in resistant bacteria of an enzyme, chloramphenicol acetyltransferase (CAT), which catalyses the acetyl-CoA dependent acetylation of the antibiotic at C-3 hydroxyl group. To elucidate the mechanism of resistant inhibitory effect, the acorenone which had the strongest resistant inhibitory activity, was investigated on the CAT assay. As the result, the combination of Cm and acorenone showed the strongest inhibitory activity on CAT as noncompetitive and dose dependent manner.

  • PDF

Ochrobactrum anthropi JW-2의 paraquat 내성에 관한 특성 (Characterization of a paraquat resistance of Ochrobactrum anthropi JW-2.)

  • 원성혜;이병현;조진기
    • 한국미생물·생명공학회지
    • /
    • 제28권1호
    • /
    • pp.1-7
    • /
    • 2000
  • The bacterial strain JW-2 which conferred resistance against paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride) was isolated from soil. The strain was identified as an Ochrobactrum anthropi based on its morphological, physiological, biological and fatty acid composition, and was designated as Ochrobactrum anthropi JW-2. We compard paraquat resistance of O. anthropi JW-2 with Escherichia coli J105. In the presence of 100mM paraquat, E. coli JM105 was not grown whereas the growth rate of O. anthropi was about 70% of control. We compared the sensitivity of O. anthropi JW-2 and E. coli J105 to redox-cycling compounds such as paraquat, plumbagin or menadione, which are known to exacebate wuperoxide generation. O. anthropi JW-2 did not show cross-resistance to plumbagin or menadione. superoxide dismutase activity was increased in paraqunt-treated E. coli JM105 while it was not increased in O.anthropi JW-2. These results suggest that the mechanism of paraquat resistance in O.anthropi JW-2 is probably due to selectively decreased permeability toward paraquat by membrane protein.

  • PDF

MLS계 항생물질 유도내성 유전자의 크로닝과 유전자의 발현조절 기전 - Staphylococus aureus TR-1균주의 프라스미드 pMB4에 존재하는 MLS 내성 유전자 ermC-4 (Cloning of Inducible MLS Antibiotics Resistance Genes and their Expression Control Mechanism - ermC-4, a macrolide-lincosamide-streptogramin B resistance determinant on pMB4 from Staphylococcus aureus TR-1)

  • 김수환;최응칠;김병각;심미자
    • 약학회지
    • /
    • 제35권1호
    • /
    • pp.22-29
    • /
    • 1991
  • pMB4 is a 2.4-kilobase plasmid of Staphylococcus aureus TR-1 that confers inducible resistance to the macrolide-lincosamide-streptogramin B(MLS) antibiotics. By subcloning studies, it was found that the MLS resistance determinant was located at 1.0Kb fragment between Sau3AI and TaqI sites. DNA sequence of the MLS resistant determinant, named ermC-4 was determined, and found to be highly homologous with that of ermC. Because the leader peptide sequence of ermC-4 was identical with that of ermC, the expression of the resistance gene is thought to be controlled by posttranscriptional attenuation in S. aureus TR-1.

  • PDF

Molecular Mechanisms Involved in Bacterial Speck Disease Resistance of Tomato

  • Kim, Young-Jin;Gregory B. Martin
    • The Plant Pathology Journal
    • /
    • 제20권1호
    • /
    • pp.7-12
    • /
    • 2004
  • An important recent advance in the field of plant-microbe interactions has been the cloning of genes that confer resistance to specific viruses, bacteria, fungi or insects. Disease resistance (R) genes encode proteins with predicted structural motifs consistent with them having roles in signal recognition and transduction. Plant disease resistance is the result of an innate host defense mechanism, which relies on the ability of plant to recognize pathogen invasion and efficiently mount defense responses. In tomato, resistance to the pathogen Pseudomonas syringae pv. tomato is mediated by the specific recognition between the tomato serine/threonine kinase Pto and bacterial protein AvrPto or AvrPtoB. This recognition event initiates signaling events that lead to defense responses including an oxidative burst, the hypersensitive response (HR), and expression of pathogenesis- related genes.