DOI QR코드

DOI QR Code

Plasma Resistance and Etch Mechanism of High Purity SiC under Fluorocarbon Plasma

  • Jang, Mi-Ran (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology (Icheon)) ;
  • Paek, Yeong-Kyeun (School of Materials Science and Engineering, Andong National University) ;
  • Lee, Sung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology (Icheon))
  • Received : 2012.05.14
  • Accepted : 2012.07.09
  • Published : 2012.07.31

Abstract

Etch rates of Si and high purity SiC have been compared for various fluorocarbon plasmas. The relative plasma resistance of SiC, which is defined as the etch rate ratio of Si to SiC, varied between 1.4 and 4.1, showing generally higher plasma resistance of SiC. High resolution X-ray photoelectron analysis revealed that etched SiC has a surface carbon content higher than that of etched Si, resulting in a thicker fluorocarbon polymer layer on the SiC surface. The plasma resistance of SiC was correlated with this thick fluorocarbon polymer layer, which reduced the reaction probability of fluorine-containing species in the plasma with silicon from the SiC substrate. The remnant carbon after the removal of Si as volatile etch products augments the surface carbon, and seems to be the origin of the higher plasma resistance of SiC.

Keywords

References

  1. S. I. Vlaskina, "Silicon Carbide LED," Semiconductor Physics, Quantum Electronics & Optoelectronics, 5 [1] 71-5 (2001).
  2. A. Elasser and T. P. Chow, "Silicon Carbide Benefits and Advantages for Power Electronics Circuits and Systems," Proc. IEEE, 90 [6] 969-86 (2001).
  3. B. Ozpineci, L. M. Tolbert, S. K. Islam, and M. Hasanuzzaman, "Effects of Silicon Carbide (SiC) Power Devices on HEV PWM Inverter Losses," pp. 1061-6 in the Proceeding of the Industrial Electronics Soc. Annu. Conf., IEEE, Denver, Colorado, 2001.
  4. S. S. Hwan, S. W. Park, J. H. Han, K. S. Han, and C. M. Kim, "Mechanical Properties of Porous Reaction Bonded Silicon Carbide," J. Kor. Ceram. Soc., 39 [10] 948-54 (2002). https://doi.org/10.4191/KCERS.2002.39.10.948
  5. B. V. Manoj Kumar, M. H. Roh, Y. W. Kim, W. J. Kim, S. W. Park, and W. S. Seo, "Effect of Additive Composition on Microstructure and Mechanical Properties of SiC Ceramics Sintered with Small Amount of $RE_2O_3$ (RE: Sc, Lu, Y) and AlN," J. Mater. Sci., 44 5939-43 (2009). https://doi.org/10.1007/s10853-009-3818-8
  6. G. M. Kim, G. S. Cho, and S. W. Park, "Effects of ${\beta}$-SiC Particle Seeds on Morphology and Size of High Purity ${\beta}$-SiC Powder Synthesized using Sol-Gel Process," J. Kor. Ceram. Soc., 46 [5] 528-33 (2009). https://doi.org/10.4191/KCERS.2009.46.5.528
  7. L. Jiang, R. Cheung. R. Brown, and A. Mount, "Inductively Coupled Plasma Etching of SiC in $SF_6/O_2$ and Etch-induced Surface Chemical Bonding Modifications," J. Appl. Phys., 93 [3] 1376-83 (2003). https://doi.org/10.1063/1.1534908
  8. N. J. Dartnell, M. C. Flowers, R. Greef, and J. Zhu, "Reactive Ion Etching of Silicon Carbide ($Si_{x}C_{1-x}$)," Vac., 46 [4] 349-55 (1995). https://doi.org/10.1016/0042-207X(94)00077-8
  9. B. W. Kim, S. M. Kong, and B. T. Lee, "Modeling SiC Etching in $C_2F_6/O_2$ Inductively Coupled Plasma Using Neural Networks," J. Vac. Sci. Technol. A, 20 [1] 146-52 (2002). https://doi.org/10.1116/1.1427882
  10. Ho, Pauline, Johannes, E. Justine, Buss, J. Richard, and Meeks, Ellen, "Modeling the Plasma Chemistry of $C_2F_6\;and\;CHF_3$ Etching of Silicon Dioxide, with Comparisons to Etch Rate and Diagnostic Data," J. Vac. Sci. Technol. A, 19 [5] 2344-67 (2001). https://doi.org/10.1116/1.1387048
  11. A. J. van Roosmalen, "Review: Dry Etching of Silicon Oxide," Vac., 34 429-36 (1984). https://doi.org/10.1016/0042-207X(84)90079-4
  12. M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, and G. S. Oehrlein, "Study of the $SiO_2-to-Si_3N_4$ Etch Selectivity Mechanism in Inductively Coupled fluorocarbon Plasmas and a Comparison with the $SiO_2$-to-Si mechanism," J. Vac. Sci. Technol. A, 17 [1] 26-37 (1999). https://doi.org/10.1116/1.582108
  13. M. Matsui, T. Tatsumi, and M. Sekine, "Observation of Surface Reaction Layers Formed in Highly Selective $SiO_2$ Etching," J. Vac. Sci Technol. A, 19 [4] 1282-8 (2001). https://doi.org/10.1116/1.1383064
  14. K. Kurihara, Y. Yamaoka, K. Karehashi, and M. Sekine, "Measurements of Desorbed Products by Plasma Beam Irradiation on $SiO_2$," J. Vac. Sci. Technol. A, 22 [6] 2311-14 (2004). https://doi.org/10.1116/1.1795830
  15. N. R. Rueger, J. J. Beulens, M. Schaepkens, M. F. Doemling, J. M. Mirza, T. E. F. M. Standaert, and G. S. Oehrlein, "Role of Steady State Fluorocarbon Films in the Etching of Silicon Dioxide using $CHF_3$ in an Inductively Coupled Plasma Reactor," J. Vac. Sci. Technol. A, 15 [4] 1881-9 (1997). https://doi.org/10.1116/1.580655
  16. T. E. F. M. Standaert, C Hedlund, E. A. Joseph, and G.S. Oehrlein, "Role of Fluorocarbon Film Formation in the Etching of Silicon, Silicon Dioxide, Silicon Nitride, and Amorphous Hydrogenated Silicon Carbide," J. Vac. Sci. Technol. A, 22 [1] 53-60 (2004). https://doi.org/10.1116/1.1626642
  17. D. M. Kim, S. H. Lee, W. B. Alexander, K. B. Kim, Y. S. Oh, and S. M. Lee, "X-ray Photoelectron Spectroscopy Study on the Interaction of Yttrium-Aluminum Oxide with Fluorine-Based Plasma," J. Am. Ceram. Soc., 94 [10] 3455-9 (2011). https://doi.org/10.1111/j.1551-2916.2011.04589.x
  18. T. Tatsumi, M. Matsui, M. Okigawa, and M. Sekine, "Control of Surface Reactions in High-Performance $SiO_2$ Etching," J. Vac. Sci. Technol. B, 18 [4] 1897-1902 (2000). https://doi.org/10.1116/1.1305807
  19. A. J. van Roosmalen, J. A. G. Baggerman, and S. F. H. Brader, "Dry Etching for VLSI," pp. 99-135, Plenum Press, New York and London, 1991.
  20. B. Vincent Crist, "Advanced Peak-Fitting of Monochromatic XPS Spectra," J. Surf. Anal., 4 [3] 428-34 (1998).

Cited by

  1. Improvement of uniformity in chemical vapor deposition of silicon carbide by using CFD vol.68, pp.1, 2016, https://doi.org/10.3938/jkps.68.170
  2. Fabrication and Characterisitics of Al2O3-SiC Ceramic Composites for Electrostatic Discharge Safe Components vol.25, pp.2, 2018, https://doi.org/10.4150/KPMI.2018.25.2.144
  3. 폴리실리콘용 유동층 반응기에서 탄화규소의 내구성과 적합성 연구 vol.47, pp.6, 2012, https://doi.org/10.5695/jkise.2014.47.6.354
  4. W-WC의 Spark Plasma Sintering에 의한 W2C의 합성 및 식각특성 vol.27, pp.4, 2012, https://doi.org/10.4150/kpmi.2020.27.4.293
  5. Recycling SiC Focus Rings for Reactive Ion Etching Equipment by Insertless Diffusion Bonding using Hot Isostatic Pressing vol.9, pp.12, 2012, https://doi.org/10.1149/2162-8777/abd379