• Title/Summary/Keyword: Resistance Mechanism

Search Result 1,447, Processing Time 0.032 seconds

Sliding Wear Behavior of AISI 52100 Steel with Pearlitic and Bainitic Microstructures (미세조직 변화에 따른 AISI 52100 강의 미끄럼마멸 특성)

  • Yoon, N.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.479-484
    • /
    • 2011
  • Dry sliding wear behavior of AISI 52100 steel that has a pearlite or bainite microstructure was characterized to explore the effect of microstructure on the wear of the steel. Isothermal heat treatments were employed to obtain the different microstructures. Pin-on-disk type wear tests of the steel disk were performed at loads of 25~125N in air against an alumina ball. Sliding speed and wear distance used were 0.1m/sec and 300m, respectively. Worn surfaces, wear debris and cross-sections of the worn surfaces were examined with SEM to investigate the wear mechanism of the steel. Hardness of the steel was also evaluated. Wear rate of the steel was correlated with the hardness and the microstructure. On the whole, wear resistance increased with an increase in hardness. However, the pearlite microstructure showed superior wear resistance as compared to the bainite microstructure with a similar hardness. The effect of the microstructure on the wear rate was attributed to the morphological differences of the carbide in the microstructure, which was found to have a significant effect on strain hardening during the wear.

Graphene Doping Effect of Thin Film and Contact Mechanisms (박막의 그래핀 도핑 효과와 접합 특성)

  • Oh, Teressa
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.140-144
    • /
    • 2014
  • The contact mechanism of devices is usually researched at electrode contacts. However, the contact between a dielectric and channel at the MOS structure is more important. The graphene was used as a channel material, and the thin film transistor with MOS structure was prepared to observe the contact mechanism. The graphene was obtained on Cu foil by the thermal decomposition method with $H_2$ and $CH_4$ mixed gases at an ambient annealing temperature of $1000^{\circ}C$ during the deposition for 30 min, and was then transferred onto a $SiO_2/Si$ substrate. The graphene was doped in a nitrogen acidic solution. The chemical properties of graphene were investigated to research the effect of nitric atoms doping. The sheet resistance of graphene decreased after nitrogen acidic doping, and the sheet resistance decreased with an increase in the doping times because of the increment of negative charge carriers. The nitric-atom-doped graphene showed the Ohmic contact at the curve of the drain current and drain voltage, in spite of the Schottky contact of grapnene without doping.

A Study on the Wear Characteristics of Austempered Ductile Cast Iron in Corrosive Environments (오스템퍼링한 구상점연주철의 부식환경중의 마멸특성에 관한 연구)

  • Kang, Myug-Soon;Jun, Tae-Ok;Park, Heung-Sik;Jin, Dong-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.87-95
    • /
    • 1988
  • This paper is studied to know corrowive wear characteristics of austempered ductile cast ironin corrosive environments against mating SM45C hardened two test pieces in distilled water and NaCl aqueous solution. The corrosive wear mechanism was investigated by scanning electron microscopy and retained austenite volume fraction was investigated by X-ray diffractometer. The experimental result show that the corrosive wear characteristics depend largely on the $\textrm{Fe(OH)}_{3}$which is influenced by the critical sliding distance $L_{cr}$ and $L_{cr}$ shorted with increasing NaCl concentration. It was found that the carbides in matrix have a significant effect on their corrosive wear resisance and the fine acicular bainite showed corrosive wear resistance stronger than that of the coarse acicular and platelet bainite. From above results the model of corrosive wear mechanism in corrosive environments is proposed.

  • PDF

A Study on the Influence of Ceramic Coating on Characteristics of Friction and Abrasion of Aluminum Alloy(7075 T6) Used in Mechanical Casting (세라믹 코팅이 기계 주조용 알루미늄합금(7075 T6)의 마찰ㆍ마모특성에 미치는 영향에 관한 연구)

  • Lyu, Sung-Ki;Jung, Kwang-Jo;Lu, Long
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.14-21
    • /
    • 2003
  • This study deals with the influence of ceramic coating on characteristics of friction and abrasion of aluminum allot(7075 T6) used in mechanical casting. In this research, frictional wear characteristic of ceramic coating materials such as $A1_2O_3$, $Si_3N_4$, SiC was investigated using aluminum alloy(7075 T6) and stainless 403 cast iron under room temperature and normal air pressure. The coating layer was observed using SEM. The conclusions are as follows: 1) Friction coefficients of $A1_2O_3$, SiC and $Si_3N_4$ are obtained 0.63 0.56 and 0.54 respectively. 2) Abrasion resistance of stainless 403 cast iron with $Si_3N_4$ is the best among the ceramic coating materials. 3) Abrasion mechanism of aluminum alloy(7075 T6) coaled with ceramic material and stainless 403 cast iron is caused by brittle fracture. 4) Coating the ceramic material on the aluminum alloy(7075 T6) can effectively increase the antiwear, impact properties, and corrosion resistance.

On English Non-DP Subjects and their Structural Position (영어 non-DP 주어의 구조적 위치)

  • 홍성심
    • Language and Information
    • /
    • v.6 no.2
    • /
    • pp.1-14
    • /
    • 2002
  • This paper discusses so called the non-DP subject constructions in English. In general, a subject is a DP that bears Nominative case and that occupies 〔Spec, IP〕. However, in some examples under investigation, it looks as if non-DP categories such as Prepositional Phrases(PP), Adjectival Phrases(AP), Adverbial Phrases (AdvP), Small Clauses (PreP or SC), and VP occupy the canonical subject position, 〔Spec, IP〕. Under the framework of Chomsky's (1993, 1995) along with his previous works (Chomsky 1981, 1986), the Case Checking mechanism undoubtedly assumes that only DPs can have Case Therefore, the Case Checking/Agree mechanism is stated such that the strong uninterpretable feature, in this case Case feature (D or NP) feature must be checked off in a certain manner. Therefore, any phrasal categories other than DPs are not included in the considerations. Nonetheless, there are many instances of non-DP categories in English that occupy the seemingly canonical subject position, 〔spec, IP〕. In this paper, it is proposed that the actual position of these non-DP subjects in English is not in Spec of IP. Rather, they occupy 〔Spec, TopP〕 under CP in the sense of Lasnik & Stowell (1991), Rizzi (1997), and Haegeman & Gueron (1999). In its effect, therefore, this paper extends the idea of Stowell (1981) who argues that the clausal subjects in English is not in 〔Spec, IP〕, but in 〔Spec, TopP〕. We further argue that Stowell's version of Case Resistance Principle must be extended in order to accomodate many more occurrences of so called non-DP subjects.

  • PDF

Application of self-centering wall panel with replaceable energy dissipation devices in steel frames

  • Chao, Sisi;Wu, Hanheng;Zhou, Tianhua;Guo, Tao;Wang, Chenglong
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.265-279
    • /
    • 2019
  • The self-centering capacity and energy dissipation performance have been recognized critically for increasing the seismic performance of structures. This paper presents an innovative steel moment frame with self-centering steel reinforced concrete (SRC) wall panel incorporating replaceable energy dissipation devices (SF-SCWD). The self-centering mechanism and energy dissipation mechanism of the structure were validated by cyclic tests. The earthquake resilience of wall panel has the ability to limit structural damage and residual drift, while the energy dissipation devices located at wall toes are used to dissipate energy and reduce the seismic response. The oriented post-tensioned strands provide additional overturning force resistance and help to reduce residual drift. The main parameters were studied by numerical analysis to understand the complex structural behavior of this new system, such as initial stress of post-tensioning strands, yield strength of damper plates and height-width ratio of the wall panel. The static push-over analysis was conducted to investigate the failure process of the SF-SCWD. Moreover, nonlinear time history analysis of the 6-story frame was carried out, which confirmed the availability of the proposed structures in permanent drift mitigation.

Study and design of assembled CFDST column-beam connections considering column wall failure

  • Guo, Lei;Wang, Jingfeng;Yang, T.Y.;Wang, Wanqian;Zhan, Binggen
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.201-213
    • /
    • 2021
  • Currently, there is a lack of research in the design approach to avoid column wall failure in the concrete filled double skin steel tubular (CFDST) column-beam connections. In this paper, a finite element model has been developed and verified by available experimental data to analyze the failure mechanism of CFDST column-beam connections. Various finite element models with different column hollow ratios (χ) were established. The simulation result revealed that with increasing χ the failure mode gradually changed from yielding of end plate, to local failure of the column wall. Detailed parametric analyses were performed to study the failure mechanism of column wall for the CFDST column-beam connection, in which the strength of sandwiched concrete and steel tube and thickness of steel tube were incorporated. An analytical model was proposed to predict the moment resistance of the assembled connection considering the failure of column wall. The simulation results indicate that the proposed analytical model can provided a conservative prediction of the moment resistance. Finally, an upper bound value of χ was recommend to avoid column wall failure for CFDST column-beam connections.

Negative evidence on the transgenerational inheritance of defense priming in Arabidopsis thaliana

  • Yun, Se-Hun;Noh, Bosl;Noh, Yoo-Sun
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.342-347
    • /
    • 2022
  • Defense priming allows plants to enhance their immune responses to subsequent pathogen challenges. Recent reports suggested that acquired resistances in parental generation can be inherited into descendants. Although epigenetic mechanisms are plausible tools enabling the transmission of information or phenotypic traits induced by environmental cues across generations, the mechanism for the transgenerational inheritance of defense priming in plants has yet to be elucidated. With the initial aim to elucidate an epigenetic mechanism for the defense priming in plants, we reassessed the transgenerational inheritance of plant defense, however, could not observe any evidence supporting it. By using the same dipping method with previous reports, Arabidopsis was exposed repeatedly to Pseudomonas syringae pv tomato DC3000 (Pst DC3000) during vegetative or reproductive stages. Irrespective of the developmental stages of parental plants that received pathogen infection, the descendants did not exhibit primed resistance phenotypes, defense marker gene (PR1) expression, or elevated histone acetylation within PR1 chromatin. In assays using the pressure-infiltration method for infection, we obtained the same results as above. Thus, our results suggest that the previous observations on the transgenerational inheritance of defense priming in plants should be more extensively and carefully reassessed.

Regulation of CMGC kinases by hypoxia

  • KyeongJin Kim;Sang Bae Lee
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.584-593
    • /
    • 2023
  • Hypoxia, a widespread occurrence observed in various malignant tumors, results from rapid tumor growth that outpaces the oxygen supply. Tumor hypoxia precipitates several effects on tumor biology; these include activating angiogenesis, intensifying invasiveness, enhancing the survival of tumor cells, suppressing anti-tumor immunity, and fostering resistance to therapy. Aligned with the findings that correlate CMGC kinases with the regulation of Hypoxia-Inducible Factor (HIF), a pivotal modulator, reports also indicate that hypoxia governs the activity of CMGC kinases, including DYRK1 kinases. Prolyl hydroxylation of DYRK1 kinases by PHD1 constitutes a novel mechanism of kinase maturation and activation. This modification "primes" DYRK1 kinases for subsequent tyrosine autophosphorylation, a vital step in their activation cascade. This mechanism adds a layer of intricacy to comprehending the regulation of CMGC kinases, and underscores the complex interplay between distinct post-translational modifications in harmonizing precise kinase activity. Overall, hypoxia assumes a substantial role in cancer progression, influencing diverse aspects of tumor biology that include angiogenesis, invasiveness, cell survival, and resistance to treatment. CMGC kinases are deeply entwined in its regulation. To fathom the molecular mechanisms underpinning hypoxia's impact on cancer cells, comprehending how hypoxia and prolyl hydroxylation govern the activity of CMGC kinases, including DYRK1 kinases, becomes imperative. This insight may pave the way for pioneering therapeutic approaches that target the hypoxic tumor microenvironment and its associated challenges.

Shear resistance behaviors of a newly puzzle shape of crestbond rib shear connector: An experimental study

  • Chu, Thi Hai Vinh;Bui, Duc Vinh;Le, Van Phuoc Nhan;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1157-1182
    • /
    • 2016
  • A newly puzzle shape of crestbond rib shear connector is a type of ductile perfobond rib shear connector. This shear connector has some advantages, including relatively easy rebar installation and cutting, as well as the higher shear resistance strength. Thus, this study proposed a newly puzzle shape of crestbond rib with a "${\mho}$" shape, and its shear resistance behaviors and shear strengths were examined using push-out tests. Five main parameters were considered in the push-out specimens to evaluate the effects of shear resistance parameters such as the dimensions of the crestbond rib, transverse rebars in the crestbond dowel, concrete strength, rebar strength, and dowel action on the shear strength. The shear loading test results were used to compare the changes in the shear behaviors, failure modes, and shear strengths. It was found that the concrete strength and number of transverse rebars in the crestbond rib were significantly related to its shear resistance. After the initial bearing resistance behavior of the concrete dowel, a relative slip occurred in all the specimens. However, its rigid behavior to shear loading decreased the ductility of the shear connection. The cross-sectional area of the crestbond rib was also shown to have a minor effect on the shear resistance of the crestbond rib shear connector. The failure mechanism of the crestbond rib shear connector was complex, and included compression, shear, and tension. As a failure mode, a crack was initiated in the middle of the concrete slab in a vertical direction, and propagated with increasing shear load. Then, horizontal cracks occurred and propagated to the front and rear faces of the specimens. Based on the results of this study, a design shear strength equation was proposed and compared with previously suggested equations.