• Title/Summary/Keyword: Resilient material

Search Result 121, Processing Time 0.026 seconds

Development of Sleeper for High Speed Railway (고속철도 방진침목 개발)

  • 양신추;노혁천;강윤석;이종득
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.311-318
    • /
    • 2000
  • In this paper, the process of development of resilient sleepers, which improves the train safety, passenger comport and reduces the noise and vibration, is discussed. To determine the required material properties of elastic pad, static and dynamic simulations are performed and is applied in manufacturing. From the experiment results, it is investigated that the displacement is less for sleeper with elastic pad than that in ordinary PC form. The rate of displacement is also shown In be less for the sleeper with elastic pad. These results indicate that the elastic pad can reduce possibility of rail-corrugations and thus resulting in the reduction of maintenance costs.

  • PDF

Clinical considerations of impression making for edentulous patients (성공적인 총의치 제작을 위한 단계별 포인트 - 무치악인상채득, 이것이 핵심이다.)

  • Park, Chan-Jin
    • The Journal of the Korean dental association
    • /
    • v.55 no.1
    • /
    • pp.72-81
    • /
    • 2017
  • Regardless of the type of impression being made, the tray is the most important part of the impression-making procedure for completely edentulous patients. Dentists have to make use of a combination of rigid, thermoplastic, and resilient materials and control step-by-step procedure from irreversible hydrocolloid impression to definitive cast fabrication. For successful edentulous impression, some considerable clinical tips were guided.

  • PDF

Development and Assessment for Resilient Modulus Prediction Model of Railway Trackbeds Based on Modulus Reduction Curve (탄성계수 감소곡선에 근거한 철도노반의 회복탄성계수 모델 개발 및 평가)

  • Park, Chul-Soo;Hwang, Seon-Keun;Choi, Chan-Yong;Mok, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.805-814
    • /
    • 2008
  • This study focused on the resilient modulus prediction model, which is the functions of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered soil, and crushed-rock soil mixture. The model is composed with the maximum Young's modulus and nonlinear values for higher strain in parallel with dynamic shear modulus. The maximum values is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea was evaluated using a 3-D nonlinear elastic computer program (GEOTRACK) and compared with measured elastic vertical displacement during the passages of freight and passenger trains. The material types of sub-ballasts are crushed stone and weathered granite soil, respectively. The calculated vertical displacements within the sub-ballasts are within the order of 0.6mm, and agree well with measured values with the reasonable margin. The prediction models are thus concluded to work properly in the preliminary investigation.

  • PDF

Effect of Stress-Dependent Modulus and Poisson's Ratio on Rutting Prediction in Unbound Pavement Foundations (도로기초의 Rutting 예측에 미치는 응력의존 탄성계수와 포와송비의 영향)

  • Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.15-24
    • /
    • 2007
  • This paper will present a simple approach (or predicting layer deformation of unbound pavement materials with stress-dependent material properties. The approach is based on an uncoupled formulation in which the resilient and deformation response of unbound materials are considered separately. As a result, an uncoupled approach incorporating a resilient stiffness and Poisson's ratio model is able to simulate field measured deformation in pavement foundations. In addition, a sensitivity analysis is conducted to identify the significant factors in the stress-dependent modulus and Poison's ratio model. The predicted trends of deformation from this analysis are presented and discussed.

An Experimental Study on the Vibration Response Characteristics of Floating Floor Systems for Heavyweight Impact Noise Reduction. (바닥충격음 차단을 위한 뜬바닥 구조의 진동응답특성에 관한 실험적 연구)

  • Choi, Kyung-Suk;Seok, Won-Kyun;Mauk, Ji-Wook;Shin, Yi-Seop;Kim, Hyung-Joon;Kim, Jeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.227-228
    • /
    • 2023
  • A floating floor generally consists of mortar bed separated from the structural RC slab by a continuous resilient layer. It is known that the floating floors are a type of vibration-isolation system to improve the impact sound insulation performance. However, some researchers have demonstrated that the amplification of vibration response at a specific range of frequencies results in an increase in the impact sound level. This study carried out the forced vibration tests to obtain the frequency response function (FRF) of a floating floor compared with a bare RC slab. Test results shows that the additional peak occur in vibrational spectrum of the floating floor except natural vibration modes of the bare RC slab. This is because the relatively flexible resilient material and mass of the mortar bed offer an additional degree of freedom in the structural system. Therefore, it could be efficient for reduction of floor impact vibration and noise to control the additional mode frequency and response of floating floors.

  • PDF

Development of Permanent Deformation Prediction Model for Trackbed Foundation Materials based on Shear Strength Parameters (강화노반 쇄석재료의 전단강도특성을 고려한 영구변형예측모델 개발)

  • Lim, Yujin;Hwang, Jungkyu;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.623-630
    • /
    • 2012
  • Formation used as trackbed foundation for providing vertical bearing capacity onto rail foundation are composed of crushed stones usually with certain type of grain size distribution. Permanent deformation in trackbed foundation can be generated by increasing number of load repetition due to train traffic increases, causing track irregularity. In this study, a specially prepared trackbed foundation materials (M-40) used in Korea has been tested using a large repetitive triaxial compression apparatus in order to understand resilient and permanent deformation characteristics of the material. From these test results, resilient and permanent deformation characteristic are analyzed so that a permanent deformation model is developed which can consider number of load repetition N, confining stress (${\sigma}_3$), shear stress ratio(${\tau}/{\tau}_f$) and stiffness of the material.

Modified soft tissue cast for fixed partial denture: a technique

  • Patil, Pravinkumar G.
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.1
    • /
    • pp.33-36
    • /
    • 2011
  • In process of fabrication of a fixed partial denture, dies are trimmed to expose margins of the preparations. The need for the soft tissue cast is quite evident as the soft tissue emergence profile that surrounds the prepared tooth is destroyed in the process of fabrication. This article describes a modified technique to fabricate the soft tissue cast for the conventional fixed partial denture. The impression made with the polyvinylsiloxane was first poured to prepare the die cast. After retrieval of the cast, the same impression was poured second time with the resin based resilient material to cover the facial and proximal gingival areas. The remaining portion of the impression was poured with the gypsum material. This technique does not require additional clinical appointment, second impression procedure, technique sensitive manipulations with impression, or cumbersome laboratory procedures. The simplicity of this technique facilitates and justifies its routine use in fabrication of the fixed partial denture.

Production and properties of cross-linked recombinant pro-resilin: an insect rubber-like biomaterial

  • Kim, Mi-Sook;Elvin, Chris;Lyons, Russell;Huson, Mickey
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.256-256
    • /
    • 2006
  • The design and synthesis of novel biomolecular materials, based on mimicking the properties of molecules found in nature, is providing materials with unusual properties. Resilin serves as an energy storage material in insects and facilitates flight, jumping (in fleas, froghoppers etc) and sound production (cicadas, etc). Resilin is initially produced as a soluble protein and in its mature form is crosslinked through formation of dityrosine units into a very large insoluble polymer. In the present study, we have synthesized a recombinant form of resilin that can be photochemically cross-linked into a resilient, rubber-like biomaterial that may be suitable for spinal disc implants. This material is almost perfectly elastic and its fatigue lifetime in insects must be >500 million cycles.

  • PDF

Analysis of Influence Factors on Dynamic Properties of Floor Impact Noise Insulation Materials (바닥충격음 완충재의 동적특성에 영향을 미치는 요인 분석)

  • Kim, Heung-Sik;Joo, Si-Woong;Kim, Dae-Jun;Kim, Byeung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.946-949
    • /
    • 2005
  • In this paper, influence factors on dynamic properties of floor impact noise insulation materials are suggested. For this purpose measurements on the dynamic stiffness and the loss factor of resilient materials are carried out by Korea standard (KS F 2868) according to the change of density, thickness, design pattern, and composition of materials. As a result the values of dynamic stiffness was decreased at high density and thick thickness, and that of loss factor was increased at low density. For dynamic properties, the pattern of lattice and waffle type material is better than that of plat type, and the mixed composition of materials is better than the composition of double layer materials at same thickness.

  • PDF

Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges

  • Abbas, S.;Nehdi, M.L.;Saleem, M.A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.271-295
    • /
    • 2016
  • In this study, an extensive literature review has been conducted on the material characterization of UHPC and its potential for large-scale field applicability. The successful production of ultra-high performance concrete (UHPC) depends on its material ingredients and mixture proportioning, which leads to denser and relatively more homogenous particle packing. A database was compiled from various research and field studies around the world on the mechanical and durability performance of UHPC. It is shown that UHPC provides a viable and long-term solution for improved sustainable construction owing to its ultrahigh strength properties, improved fatigue behavior and very low porosity, leading to excellent resistance against aggressive environments. The literature review revealed that the curing regimes and fiber dosage are the main factors that control the mechanical and durability properties of UHPC. Currently, the applications of UHPC in construction are very limited due to its higher initial cost, lack of contractor experience and the absence of widely accepted design provisions. However, sustained research progress in producing UHPC using locally available materials under normal curing conditions should reduce its material cost. Current challenges regarding the implementation of UHPC in full-scale structures are highlighted. This study strives to assist engineers, consultants, contractors and other construction industry stakeholders to better understand the unique characteristics and capabilities of UHPC, which should demystify this resilient and sustainable construction material.