• Title/Summary/Keyword: Residual stress behavior

Search Result 520, Processing Time 0.028 seconds

Analysis of Effective Stress Parameter on Partially Saturated Soil via Hydro-Mechanical Behaviors (부분포화토의 침투와 흙의 거동에 따른 유효응력 계수 분석)

  • Kim, Jae-Hong;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.117-126
    • /
    • 2011
  • Based on thermodynamics, the mathematical framework governing the hydro-mechanical behavior of partially saturated soil is derived by using balance equations, and the numerical analysis through implementation of various effective stress definitions is performed. Effective stress on partially saturated soil describes the soil strength which is presented by the relationship between water content and soil suction. For the estimation of hydro-mechanical behavior on partially saturated soil, effective stress parameter ${\chi}$ defined from various literatures is especially analyzed to understand the conditions of constitutive equations regarding residual saturation and displacement of soil. As a result, effective stress parameter ${\chi}$ has an influence on the variation of matric suction in soil with an external load and seepage. However it was found that the effect of each parameter ${\chi}$ varies with residual degree of saturation, and that of each parameter ${\chi}$ decreased with decrease in displacement of soil caused by an external load.

Bond Stress-Slip Model of Reinforced Concrete Member under Repeated Loading (반복하중을 받는 철근콘크리트 부재의 부착응력-슬립 모델)

  • Oh, Byung-Hwan;Kim, Se-Hoon;Kim, Ji-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.104-107
    • /
    • 2004
  • The crack widths of reinforced concrete flexural members are influenced by repetitive fatigue loadings. The bond stress-slip relation is necessary to estimate these crack widths realistically. The purpose of the present study is, therefore, to propose a realistic model for bond stress-slip relation under repeated loading. To this end, several series of tests were conducted to explore the bond-slip behavior under repeated loadings. Three different bond stress levels with various number of load cycles were considered in the tests. The present tests indicate that the bond strength and the slip at peak bond stress are not influenced much by repeated loading if bond failure does not occur. However, the values of loaded slip and residual slip increase with the increase of load cycles. The bond stress after repeated loading approaches the ultimate bond stress under monotonic loading and the increase of bond stress after repeated loading becomes sharper as the number of repeated loads increases. The bond stress-slip relation after repeated loading was derived as a function of residual slip, bond stress level, and the number of load cycles. The models for slip and residual slip were also derived from the present test data. The number of cycles to bond slip failure was derived on the basis of safe fatigue criterion, i.e. maximum slip criterion at ultimate bond stress.

  • PDF

Cr - Mo鋼 熔接 後熱處理材 의 勞破壞 에 關한 硏究

  • 박재규;김석원;김연식
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.16-26
    • /
    • 1985
  • Post weld heat treatment(PWHT), at more than 600.deg. C, is essential to remove residual stress and hydrogen in weld HAZ and improve fatigue characteristics. However, residual stress during PWHT is responsible for PWHT embitterment and it promotes precipitation of impurities to grain boundary. In this paper, the effect of stress simulated residual stress on fatigue failure was evaluated by fatigue test, microhardness test and fractograph. The obtained results are summarized as follows; (1) The fatigue crack growth rate(da/dN) of parent and heat treated parent was affected by microstructure due to heat treatment and it depended on stress intensity factor (.DELTA.k). (2) The fatigue strength of weld HAZ was dependent on applied stress during PWHT and da/dN after PWHT was slower than as-weld. (3) Softening amount of weld HAZ was bigger than any other due to PWHT. Hardness value of weld HAZ was affected by heat treatment under the applied stress of 10 $kgf/mm^2$, but beyond 20 $kgf/mm^2$ it was increased by the applied stress rather than heat treatment. (4) Beyond the applied stress of 20 $kgf/mm^2$ during PWHT, intergranular fracture surface was observed and its amount was increased with applied stress during PWHT. (5) Effect of applied stress during PWHT on aspect of fracture surface was larger rather than that on fatigue crack growth behavior.

  • PDF

A Fracture Behavior of Connections of Structural Steel Members under Low Temperature (극한조건하 강구조 부재 이음부의 파괴거동해석)

  • 김두환;한석규;안세희
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.213-220
    • /
    • 1998
  • Welding structures will be occurred sudden crack or failure by reduced fracture toughness in case of low temperature. To protect these unstable fracture is very important. Because fracture of welding part come from welding faults or residual stress, critical stress intensity factors are acquired at temperatures between $22^{\circ}C$ and $-70^{\circ}C$ from base metal, welding metal and H.A.Z. It was studied effectiveness of annealing and affection of residual stress under low temperatures. In case of fracture toughness test, it showed that fracture toughness value decreased, according to the decrease of temperature. Expecially In case that compressive residual stress was existed, $K_C$ increased.

  • PDF

고주파 표면경화에 의한 피로강도 특성과 예측에 관한 연구

  • Song, Sam-Hong;Choi, Byoug-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.122-130
    • /
    • 2001
  • Induction surface hardening is widely used to enhance local strength and hardness. However, most research is only to have a focus on fatigue life and fatigue behavior is not so much studied. So, in this study, Cr-Mo steel alloy(SCM440) was used to show the effect of residual stress and micro hole on the fatigue strength fur base metal and induction surface hardened specimen. In addition, the fatigue characteristic between surface hardened and fully hardened steel is somewhat different. It is caused by hardness distribution, residual stress and inclusions etc.. The modification of prediction equation of fatigue strength is proposed and predicted results show very good accuracy. A $textsc{k}$, which is calculated 1.46, is introduced to consider the effect of stationary crack with defect. A new method of modifying residual stress is proposed to examine the mean stress effect under fatigue loading.

  • PDF

Modeling of Single Fiber Pull-Out Experiment Considering the Effects of Transverse Isotropy (횡방향 등방성을 고려한 단섬유 인장 실험 모델링)

  • Seol, Il-Chan;Lee, Choon-Yeol;Chai, Young-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1384-1392
    • /
    • 2002
  • Single fiber pull-out technique has been commonly used to characterize the mechanical behavior of interface in fiber reinforced composite materials. An improved analysis considering the effects of transversely isotropic properties of fiber and the effects of thermal residual stresses in both radial and axial directions along the fiber/matrix interface is developed for the single fiber pull-out test. Although the stress transfer properties across the interface is not much affected by considering the transversely isotropic properties of fiber, interfacial debonding is notably encouraged by the effect. The interfacial shear stress that plays an important role in interfacial debonding is very much affected by the component of axial thermal residual stress in the bonded region, which can induce a two-way debonding mechanism.

A Strength Analysis of Welded Plates Using the J-integral (J-적분을 이용한 용접부 강도 해석)

  • 이민호;양영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.326-329
    • /
    • 2000
  • Study of Weldment fracture behavior mcludes thermal analysis, residual stress analysis, and fracture analysis The 1-integral loses its path-independency in a res~dual stress field Therefore, it id necessary to develop a program to calculate the J-integral in a welded plate. m this study, theoretical formulation and program were developed for the evaluation of the 1-integral at the crack tip o i weldments. To verify equations and program, welded thin plate and thick plate were used to calculate residual stress and the J-integral.

  • PDF

Interfacial Stress Concentrations of Vertical Through-plate to H-beam Connections in CFT Column

  • Choi, Insub;Chang, HakJong;Kim, JunHee
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.325-334
    • /
    • 2020
  • This paper aims to evaluate the interfacial stress concentrations on connection between vertical through-plate and H-beam in CFT column. Full-scale experiments were performed on three specimens with varying thickness of the vertical through-plate to investigate the interfacial stress concentration factor in the connections. The specimens underwent brittle failure at the location where the steel beam is connected to the vertical through-plate before the steel beam reached its plastic moment. The strain data of the part were analyzed, and the sectional analyses were conducted to determine appropriate residual stress models. In addition, the stress concentration factor was quantified by comparing the analytical local behavior in which the stress concentration is not reflected and the experimental data reflecting the stress concentration. The results showed that the maximum reduction of the stress concentration factor due to an increase in the thickness of the vertical through-plate is 50.3%.

Behavior of girth-welded buried steel pipes under external pressure (원주 용접된 압력 매설강관의 거동 분석)

  • Jeon, Juntai;Lee, Chinhyung;Chang, Kyongho
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • This paper presents finite element (FE) analyses to clarify the effects of external pressure on the residual stresses in a girth-welded steel pipe. At first, FE simulation of the girth welding process is carried out to obtain the weld-induced residual stresses employing sequentially coupled three-dimensional (3-D) thermo-mechanical FE formulation. Then, 3-D elastic-plastic FE analyses incorporating the residual stresses and plastic strains obtained from the preceding FE simulation are performed to investigate the residual stress behavior in the girth-welded pipe under external pressure. The FE analysis results show that the hoop compressive stresses induced by the external pressure significantly alter the hoop residual stresses in the course of the mechanical loading.

A 2D FE Model for Unique Solution of Peening Residual Stress in Single Shot Impact (단일 숏 충돌시 피닝잔류응력 유일해를 위한 2차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.362-370
    • /
    • 2008
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters consist of elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. As a kinematical parameter, there is impact velocity. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peening factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.