• Title/Summary/Keyword: Residual strain

Search Result 639, Processing Time 0.027 seconds

Mass Cultivation of Rhodococcus sp. 3-2, a Carbendazim-Degrading Microorganism, and Development of Microbial Agents (카벤다짐 분해 미생물인 Rhodococcus sp. 3-2의 대량 배양 및 미생물 제제 개발)

  • Jun-Kyung Park;Seonghun Im;Jeong Won Kim;Jung-Hwan Ji;Kong-Min Kim;Haeseong Park;Yeong-Seok Yoon;Hang-Yeon Weon;Gui Hwan Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.259-268
    • /
    • 2023
  • Rhodococcus sp. 3-2 strain has been reported to degrade benzimidazole-based pesticides, such as benomyl and carbendazim. Therefore, this study aimed to optimize culture medium composition and culture conditions to achieve cost-effective and efficient large-scale production of the Rhodococcus sp. 3-2 strain. The study identified that the optimal media composition for mass culture comprised 0.5% glucose, 0.5% yeast extract, 0.15% NaCl, 0.5% K2HPO4, 0.5% sodium succinate, and 0.1% MgSO4. Additionally, a microbial agent was developed using a 1.5-ton fermenter, with skim milk (20%), monosodium glutamate (15%), and vitamin C (2%) as key components. The storage stability of the microbial agent has been confirmed, with advantages of low temperature conservation, which helps to sustain efficacy for at least six months. We also assessed the benomyl degradation activity of the microbial agent within field soil. The results revealed an over 90% degradation rate when the concentration of viable cells exceeded 2.65 × 106 CFU/g after a minimum of five weeks had elapsed. Based on these findings, Rhodococcus sp. 3-2 strain can be considered a cost-effective microbial agent with diverse agricultural applications.

Changes in the Physicochemical and Antioxidant Characteristics during the Fermentation of Jujube Wine Using Hot Water Extract of Dried Jujube (건대추 열수추출물을 이용한 대추와인 발효중의 이화학 및 항산화적 특성 변화)

  • Eom, In-Ju;Choi, Jung-In;Kim, In-Ho;Kim, Tae-Hoon;Kim, Seong-Ho
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1298-1307
    • /
    • 2016
  • In the study, we investigated the optimum fermentation conditions as well as changes of physicochemical and antioxidant characteristics during the fermentation of jujube wine. The physicochemical characteristics of the jujube hot water extracts used in this study were a pH of 5.05, 0.01% acidity, and $6.5^{\circ}Brix$ concentration. For jujube wine fermentation, the optimal fermentation strain was selected among the isolated strains and the final chosen strain was identified as Saccharomyces cerevisiae, based on the 26S rRNA gene sequencing and similarity searching in GenBank DB. The jujube wine fermented with an initial $15^{\circ}Brix$ concentration of jujube extracts showed a maximum alcohol content of 13% and lower residual sugar concentration. Alcohol content during the jujube wine fermentation was increased after 3 days of fermentation, and no significantly difference after 6 days was found. The residual sugar concentration during the fermentation periods was significantly decreased with increasing alcohol content. The jujube wine properties at 12 days of fermentation were as follows: a pH of 4.34, acidity of 0.29%, alcohol content of 12.8%, and a residual sugar concentration of $8.70^{\circ}Brix$. The malic acid content in the organic acid of fermented jujube wine was significantly decreased during the fermentation proceeding, whereas the succinic acid and lactic acid contents were significantly increased. Antioxidant characteristics of the fermented jujube wine were appeared ABTS radical scavenging activity 45.80%, DPPH radical scavenging activity 61.89%, nitrite scavenging activity 91.95% and total polyphenol compound 3.69 mg/ml. In terms of consumer liking of the jujube wine by sensory evaluation, the color and overall acceptability of jujube wine were evaluated as more than average.

Flexural Strength of HSB I-Girder Considering Inelastic Flange Local Buckling (압축플랜지 비탄성 국부좌굴을 고려한 HSB 플레이트거더의 휨강도)

  • Cho, Eun Young;Shin, Dong Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.81-92
    • /
    • 2013
  • The ultimate flexural strength of HSB I-girders, considering the effect of local bucking, was investigated through a series of nonlinear finite element analysis. The girders were selected such that the inelastic local flange buckling or the plastic yielding of compression flanges governs the flexural strength. Both homogeneous sections fabricated from HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. In the FE analysis, the flanges and web were modeled using thin shell elements and initial imperfections and residual stresses were imposed on the FE model. An elasto-plastic strain hardening material was used for steels. After establishing the validity of present FE analysis by comparing FE results with test results published in the literature, the effects of initial imperfection and residual stress on the inelastic flange local buckling behavior were assessed. The ultimate flexural strengths of 60 I-girders with various compression flange slenderness were obtained by FE analysis and compared with those calculated from the KHBDC, AASHTO LRFD and Eurocode 3 provisions. Based on the comparison, the applicability of design equations in these specifications for the flexural strength of I-girder considering flange local buckling was evaluated.

Flexural Strength of HSB Steel Girders Due to Inelastic Lateral-Torsional Buckling - Sections with Slender Web (HSB 강거더의 비탄성 횡비틂좌굴에 의한 휨강도 - 세장 복부판 단면)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.217-231
    • /
    • 2012
  • The flexural behavior of HSB I-girder with a non-slender web attributed to inelastic lateral-torsional buckling under uniform bending was investigated using nonlinear finite element analysis of ABAQUS. The girder was assumed to have a compact or noncompact web in order to prevent premature bend-buckling of the web. The unbraced length of the girder was selected so that inelastic lateral-torsional buckling governs the ultimate flexural strength. The compression flange was also assumed to be either compact or noncompact to prevent local buckling of the elastic flange. Both homogeneous sections fabricated from HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. In the FE analysis, the flanges and web of I-girder were modeled as thin shell elements. Initial imperfections and residual stresses were imposed on the FE model. An elasto-plastic strain hardening material was assumed for steel. After establishing the validity of the present FE analysis by comparing FE results with test results in existing literature, the effects of initial imperfection and residual stress on the inelastic lateral-torsional buckling behavior were analyzed. Finite element analysis results for 96 sections demonstrated that the current inelastic strength equations for the compression flange in AASHTO LTFD can be applied to predict the inelastic lateral torsional buckling strength of homogeneous and hybrid HSB I-girders with a non-slender web.

Laboratory Test and Evaluation to Characterize the Cracking Resistance of Asphalt Mixtures (아스팔트 혼합물의 균열 저항성 평가 연구)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.9-15
    • /
    • 2004
  • The cracking resistance of asphalt mixtures is generally evaluated by measuring a single parameter (i.e., Tensile strength, Stiffness). However, the use of a single parameter has been questioned in the evaluation of asphalt mixture cracking performance. The focus of this study was to clearly identify the key properties and characteristics associated with the cracking resistance of asphalt mixtures. Results of fracture, creep, and strength tests at multiple loading rates performed on the modified and unmodified mixtures showed that the mixture cracking resistance was primarily affected by the rate of micro-damage accumulation. This was reflected in the m-value, without affecting the fracture energy limit. It was also observed that the short loading time (elastic) stiffness alone could not differentiate the mixture cracking resistance of the mixtures. It was concluded that the key to characterize the cracking resistance of asphalt mixture is in the evaluation of the combined effects of creep and failure limits. It was also found that a residual dissipated energy parameter measured from Superpave IDT strength test gave the quick and useful way to distinguish the difference of cracking resistance of asphalt mixtures. Failure strain in the longer-term creep test appeared to be a useful parameter for evaluating the combined effects of creep and failure limits of asphalt mixtures.

  • PDF

Restraint Coefficient of Long-Term Deformation and loss Rate of Pre-Compression for Concrete (콘크리트 장기변형의 구속계수와 선압축력의 손실률)

  • 연정흠;주낙친
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.521-529
    • /
    • 2002
  • A restraint coefficient for creep and dry shrinkage deformation of concrete in a composite section was derived to calculate the residual stress, and an equation for the loss rate of the pre-compression force was proposed. The derived restraint coefficient was computed by using the transformed section properties for the age-adjusted effective modulus of elasticity. The long-term behavior of complicate composite sections could be analyzed easily with the restraint coefficient. The articles of the current design code was examined for PSC and steel composite sections. The dry shrinkage strains of $150 ~ 200$\times$10^{-6}$ for the computations of the statically indeterminate force and the expansion joint could be under-estimated for less restrained sections such as the reinforced concrete. The dry shrinkage strain of $180$\times$10^{-6}$ for the computation of residual stress in the steel composite section was unreasonably less value. The loss rate of 16.3% of the design code for the PSC composite section in this study was conservative for the long-term deformation of the ACI 205 but could not be used safely for that of the Eurocode 2. For pre-compressed concrete slab in the steel composite section, the loss rate of prestressed force with low strength reinforcement was much larger than that with high strength tendon. The loss rate of concrete pre-compression increased, while that of pre-tension decreased due to the restraint of the steel girder.

Selection of insecticides for controlling Lycoriella mali in Letinula edodes sawdust cultivation (표고 톱밥재배에서 긴수염버섯파리 (Lycoriella mali)의 방제약제 선발)

  • Kim, Gil-Hah;Yoo, Jeong-Su;Koo, Chang-Duck;Lee, Sang-Gil;Park, Ji-Doo
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.2
    • /
    • pp.62-66
    • /
    • 2001
  • The thirteen commercial insecticides to Lycoriella mali were investigated on their insecticidal activities and mycelial growth of two Letinula edodes strains. For the adults, insecticides showing over 95% insecticidal activity were chlorpyrifos-methyl, fenthion, fenitrothion, benfuracarb, furathiocarb and deltamethrin. For tile larvae, diflubenzuron and cyromazine showed over 90% insecticidal activity. Fenthion, benfuracarb, furathiocarb, deltamethrin, diflubenzuron and cyromazine did not affect the mycelial growth of L. edodes strain, in Imhyup 1 variety. And deltamethrin, diflubenzuron and cyromazine did not affect that in Sanlim-5. Insecticides showing over 80% residual effect for 14 days were benfuracarb to the adults and diflubenzuron and cyromazine to the larvae. Control effect of furathiocarb, fenthion, benfuracarb, deltamethrin, diflubenzuron and cyromazine against larvae of Lycoriella mali showed 90% ten days after application under sawdust cultivation. Among them, benfuracarb, fenthion and furathiocarb revealed excellent control effect against adults. These results indicate that benfuracarb, fenthion, and furathiocarb can be used for the control of Lycoriella mali in the field. However, further studies are needed on the effect of insecticides treatment oil fruit-body yield and chemical residue in the mushroom tissues.

  • PDF

Optimization of Fermentation Conditions for the Manufacture of Wild Grape Wine (산머루주 제조를 위한 발효조건의 최적화)

  • Kim, Seong-Ho
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.24-37
    • /
    • 2008
  • Yeast with excellent ferment ability was isolated and selected from wild grape to manufacture wild grape wine. Wild grape wine by SMR-3 isolated from wild grape was better than other strains in quality, such as high alcohol content and low acidity, residual sugar, organic acid and fusel oil content. Fermentation condition was optimized to manufacture wild grape wine with response surface methodology using isolated SMR-3 as an alcohol fermentation strain. As a result of culture conditions, 10.61% of alcohol content was expected under the conditions of $21.91^{\circ}C$ fermenting temperature, $21.48^{\circ}brix$ of initial sugar content, and 14.65 day of fermentation time. Residual sugar content showed the lowest value at $24.48^{\circ}C$ fermentation temperature, $12.78^{\circ}brix$ of initial sugar content, and 9.02 day fermentation time. The highest level of sensory evaluation was found at $20.23^{\circ}C$ fermentation temperature, $25.30^{\circ}brix$ of initial sugar content, and 5.94 day fermentation time. Ethyl alcohol was the main alcohol component in wild grape wine and fusel oil in wild grape wine was hardly detected; thus, the quality of wild grape wine was considered excellent. The optimal fermentation conditions of wild grape wine was superimposed by deriving a regression equation for alcohol content, fusel oil, ethyl alcohol content, and overall palatability for each variable of wild grape wine. Hence, the optimal fermentation conditions are estimated to be: fermentation temperature $24{\sim}28^{\circ}C$, initial sugar content $20{\sim}24^{\circ}brix$, and fermenting time $12{\sim}14$ days.

The Fire Resistant Performance of RC Column with Confined Lateral Reinforcement According to Fire Exposure Condition (횡방향 철근으로 구속된 철근콘크리트 기둥의 화재 노출조건에 따른 내화성능)

  • Choi, Kwang Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • When reinforced concrete structures are exposed to fire, their mechanical properties such as compressive strength, elasticity coefficient and rebar yield strength, are degraded. Therefore, the structure's damage assessment is essential in determining whether to dismantle or augment the structure after a fire. In this study, the confinement effect of lateral reinforcement of RC column according to the numbers of fire exposure face and stirrup was verified by fire resistant test with the heating temperatures of $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$. The test results showed that the peak stress decreases and peak strain increases as the temperature is getting higher, also transverse ties are helpful in improving the compressive resistance of concrete subjected to high temperature. Based on the results of this study, the residual stress of confined concrete under thermal damage is higher at the condition of more lateral reinforcement ratio and less fire exposure faces. The decreasing ratio of elastic modulus of more confined and less exposure faces from the relationship of load and displacement was also smaller than that of opposite conditions.

Studies on the Production of Protease by Aspergillus oryzae KC-15 and Characteristics of the Enzymes (Aspergillus oryzae KC-15에 의한 protease의 생산 및 그 효소의 특징에 관한 연구)

  • 이미자;정만재
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.2
    • /
    • pp.77-85
    • /
    • 1980
  • This experiment was conducted to investigate the conditions for production and the characteristics of pretenses. Aspergillus oryzae KC-15, which is selected as a superior strain for the production of the protease, was used in this study. The results obtained were as follows: 1. The optimum culture time for the production of acid, neutral and alkaline protease on wheat bran medium were about 48, 48 and 72hr, respectively. The protease-produced by the strain were mainly alkaline and neutral one, but the production of acid protease was feeble extremely. 2. The addition of NaH$_2$PO$_4$, Na$_2$HPO$_4$, glucose, rice powder and Na-glutamate respectively to wheat bran media were effective for the production of alkaline and neutral protease, and the addition of (NH$_4$)$_2$HPO$_4$, glucose and rice powder respectively were effective for the production of acid protease. 3. Characteristics of professes(equation omitted) 4. As a heat resistance agent, NaH$_2$PO$_4$was the most effective one. The optimum amount of NaH$_2$PO$_4$was 10mg for alkaline and neutral protease, and 5mg for acid protease. 5. The heat resistance of the Protease by NaH$_2$PO$_4$was not recognized mostly above 6$0^{\circ}C$. 6. After the treatment of enzyme solution with 10mg of NaH$_2$PO$_4$for 30 minutes at 55$^{\circ}C$, the residual activities measured for alkaline, neutral and acid protease were 58, 57 and 55% respectively.

  • PDF