DOI QR코드

DOI QR Code

Mass Cultivation of Rhodococcus sp. 3-2, a Carbendazim-Degrading Microorganism, and Development of Microbial Agents

카벤다짐 분해 미생물인 Rhodococcus sp. 3-2의 대량 배양 및 미생물 제제 개발

  • Jun-Kyung Park (Center for Industrialization of Agricultural and Livestock Microorganisms) ;
  • Seonghun Im (Center for Industrialization of Agricultural and Livestock Microorganisms) ;
  • Jeong Won Kim (Center for Industrialization of Agricultural and Livestock Microorganisms) ;
  • Jung-Hwan Ji (Center for Industrialization of Agricultural and Livestock Microorganisms) ;
  • Kong-Min Kim (Center for Industrialization of Agricultural and Livestock Microorganisms) ;
  • Haeseong Park (Center for Industrialization of Agricultural and Livestock Microorganisms) ;
  • Yeong-Seok Yoon (Center for Industrialization of Agricultural and Livestock Microorganisms) ;
  • Hang-Yeon Weon (Agricultural Microbiology Division, Department of Agricultural Biology, National Institute of Agricultural Sciences) ;
  • Gui Hwan Han (Center for Industrialization of Agricultural and Livestock Microorganisms)
  • 박준경 ((재)농축산용미생물산업육성지원센터) ;
  • 임성훈 ((재)농축산용미생물산업육성지원센터) ;
  • 김정원 ((재)농축산용미생물산업육성지원센터) ;
  • 지정환 ((재)농축산용미생물산업육성지원센터) ;
  • 김공민 ((재)농축산용미생물산업육성지원센터) ;
  • 박해성 ((재)농축산용미생물산업육성지원센터) ;
  • 윤영석 ((재)농축산용미생물산업육성지원센터) ;
  • 원항연 (국립농업과학원 농업생물부 농업미생물과) ;
  • 한귀환 ((재)농축산용미생물산업육성지원센터)
  • Received : 2023.08.29
  • Accepted : 2023.11.07
  • Published : 2023.12.31

Abstract

Rhodococcus sp. 3-2 strain has been reported to degrade benzimidazole-based pesticides, such as benomyl and carbendazim. Therefore, this study aimed to optimize culture medium composition and culture conditions to achieve cost-effective and efficient large-scale production of the Rhodococcus sp. 3-2 strain. The study identified that the optimal media composition for mass culture comprised 0.5% glucose, 0.5% yeast extract, 0.15% NaCl, 0.5% K2HPO4, 0.5% sodium succinate, and 0.1% MgSO4. Additionally, a microbial agent was developed using a 1.5-ton fermenter, with skim milk (20%), monosodium glutamate (15%), and vitamin C (2%) as key components. The storage stability of the microbial agent has been confirmed, with advantages of low temperature conservation, which helps to sustain efficacy for at least six months. We also assessed the benomyl degradation activity of the microbial agent within field soil. The results revealed an over 90% degradation rate when the concentration of viable cells exceeded 2.65 × 106 CFU/g after a minimum of five weeks had elapsed. Based on these findings, Rhodococcus sp. 3-2 strain can be considered a cost-effective microbial agent with diverse agricultural applications.

Keywords

Acknowledgement

This work was supported by the National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea (Project No. PJ014897, PJ014800).

References

  1. Park JK, Seo SI, Han GH, Kim KM, Kim DH, Song J, Kim PI (2018) Development of practical media and fermentative technique for mass cultivation from agricultural and livestock microorganism. Trends in Agriculture & Life Sciences, 56, 23-33. https://doi.org/10.29335/tals.2018.56.23.
  2. Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131-140. https://doi.org/10.1016/j.micres.2017.08.016.
  3. Ahmad M, Pataczek L, Hilger TH, Zahir ZA, Hussain A, Rasche F, Schafleitner R, Solberg SO (2018) Perspectives of microbial inoculation for sustainable development and environmental management. Frontiers in Microbiology, 9, 2992. https://doi.org/10.3389/fmicb.2018.02992.
  4. Besset-Manzoni Y, Rieusset L, Joly P, Comte G, Prigent-Combaret C (2018) Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environmental Science and Pollution Research, 25, 29953-29970. https://doi.org/10.1007/s11356-017-1152-2.
  5. Park BK, Kwon SH, Yeom MS, Joo KS, Heo MJ (2022) Detection of pesticide residues and risk assessment from the local fruits and vegetables in Incheon, Korea. Scientific Reports, 12, 9613. https://doi.org/10.1038/s41598-022-13576-5.
  6. Park DW, Yang YS, Lee YU, Han SJ, Kim HJ, Kim SH, Kim JP, Cho SJ, Lee D et al. (2021) Pesticide residues and risk assessment from monitoring programs in the largest production area of leafy vegetables in South Korea: A 15-year study. Foods, 10(2), 425. https://doi.org/10.3390/foods10020425.
  7. Fang H, Wang Y, Gao C, Yan H, Dong B, Yu Y (2010) Isolation and characterization of Pseudomonas sp. CBW capable of degrading carbendazim. Biodegradation, 21, 939-946. https://doi.org/10.1007/s10532-010-9353-0.
  8. Tortella GR, Mella-Herrera RA, Sousa DZ, Rubilar O, Briceno G, Parra L, Diez MC (2013) Carbendazim dissipation in the biomixture of on-farm biopurification systems and its effect on microbial communities. Chemosphere, 93, 1084-1093. https://doi.org/10.1016/j.chemosphere.2013.05.084.
  9. Mazellier P, Leroy E, Legube B (2002) Photochemical behavior of the fungicide carbendazim in dilute aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 153, 221-227. https://doi.org/10.1016/S1010-6030(02)00296-4.
  10. Xu JL, He J, Wang ZC, Wang K, Li WJ, Tang SK, Li SP (2007) Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 57, 2754-2757. https://doi.org/10.1099/ijs.0.65095-0.
  11. Yeon J, Kim HS, Ahn JH, Han G, Oh YG, Cho IK, Park IC (2021) Degradation effect of carbendazim in soil by application with the microbial agent, Rhodococcus sp. 3-2. Korean Journal of Environmental Agriculture, 40, 322-329. https://doi.org/10.5338/KJEA.2021.40.4.36.
  12. Panades R, Ibarz A, Esplugas S (2000) Photodecomposition of carbendazim in aqueous solutions. Water Research, 34, 2951-2954. https://doi.org/10.1016/S0043-1354(00)00058-0.
  13. Deshmukh NS, Deosarkar MP (2022) A review on ultrasound and photocatalysis-based combined treatment processes for pesticide degradation. Materials Today: Proceedings, 57, 1575-1584. https://doi.org/10.1016/j.matpr.2021.12.170.
  14. Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a-state-of-art. Reviews in Environmental Science and Bio/Technology, 13, 429-466. https://doi.org/10.1007/s11157-014-9341-7.
  15. Kalwaslinska A, Kesy J, Donderski W (2008) Biodegradation of carbendazim by epiphytic and neustonic bacteria of eutrophic Chelmzynskie Lake. Polish Journal of Microbiology, 57, 221-230.
  16. Aharonson N, Katan J (1993) Delayed and enhanced biodegradation of soil-applied diphenamid, carbendazim, and aldicarb. Archives of Insect Biochemistry and Physiology, 22, 451-466. https://doi.org/10.1002/arch.940220312.
  17. Yarden O, Salomon R, Katan J, Aharonson N (1990) Involvement of fungi and bacteria in enhanced and nonenhanced biodegradation of carbendazim and other benzimidazole compounds in soil. Canadian Journal of Microbiology, 36, 15-23. https://doi.org/10.1139/m90-004
  18. Kalwasinska A, Kesy J, Donderski W, Lalke-Porczyk E (2008) Biodegradation of carbendazim by planktonic and benthic bacteria of eutrophic Lake Chelmzynskie. Polish Journal of Environmental Studies, 17, 515-523.
  19. Pandey G, Dorrian SJ, Russell RJ, Brearley C, Kotsonis S, Oakeshott JG (2010) Cloning and biochemical characterization of a novel carbendazim (methyl-1H-benzimidazol-2-ylcarbamate)-hydrolyzing esterase from the newly isolated Nocardioides sp. strain SG-4G and its potential for use in enzymatic bioremediation. Applied and Environmental Microbiology, 76, 2940-2945. https://doi.org/10.1128/aem.02990-09.
  20. Arya R, Sharma AK (2015) Bioremediation of carbendazim, a benzimidazole fungicide using Brevibacillus borstelensis and Streptomyces albogriseolus together. Current Pharmaceutical Biotechnology, 17, 185-189. https://doi.org/10.2174/1389201016666150930115737.
  21. Zhang X, Huang Y, Harvey PR, Li H, Ren Y, Li J, Wang J, Yang H (2013) Isolation and characterization of carbendazim-degrading Rhodococcus erythropolis djl-11. PLoS One, 8(10), e74810. https://doi.org/10.1371/journal.pone.0074810.
  22. Wang Z, Wang Y, Gong F, Zhang J, Hong Q, Li S (2010) Biodegradation of carbendazim by a novel actinobacterium Rhodococcus jialingiae djl-6-2. Chemosphere, 81, 639-644. https://doi.org/10.1016/j.chemosphere.2010.08.040.
  23. Nor Suhaila Y, Ramanan RN, Rosfarizan M, Abdul Latif I, Ariff AB (2013) Optimization of parameters for improvement of phenol degradation by Rhodococcus UKMP-5M using response surface methodology. Annals of Microbiology, 63, 513-521. https://doi.org/10.1007/s13213-012-0496-6.
  24. Bong K, Kim J, Yoo JH, Park I, Lee CW, Kim P (2016) Mass cultivation and secondary metabolite analysis of Rhodobacter capsulatus PS-2. KSBB Journal, 31, 158-164. https://doi.org/10.7841/ksbbj.2016.31.3.158.
  25. Yu H, Wu X, Zhang G, Zhou F, Harvey PR, Wang L, Fan S, Xie X, Li F et al. (2022) Identification of the phosphorus-solubilizing bacteria strain JP233 and its effects on soil phosphorus leaching loss and crop growth. Frontiers in Microbiology, 13, 892533. https://doi.org/10.3389/fmicb.2022.892533.
  26. Lim BKH, Thian ES (2022) Biodegradation of polymers in managing plastic waste - A review. Science of The Total Environment, 813, 151880. https://doi.org/10.1016/j.scitotenv.2021.151880.
  27. Ahmed SA, Abdella MAA, El-Sherbiny GM, Ibrahim AM, El-Shamy AR, Atalla SMM (2019) Application of one -factor- at-a-time and statistical designs to enhance α-amylase production by a newly isolate Bacillus subtilis strain-MK1. Biocatalysis and Agricultural Biotechnology, 22, 101397. https://doi.org/10.1016/j.bcab.2019.101397.
  28. Choi H, Lee YD, Kang SC (2009) Identification and cultural optimization of the fenitrothion-degrading microorganism, Bacillus sphaericus NFo1. The Korean Journal of Pesticide Science, 13, 21-27.
  29. Panda J, Kanjilal T, Das S (2018) Optimized biodegradation of carcinogenic fungicide carbendazim by Bacillus licheniformis JTC-3 from agro-effluent. Biotechnology Research and Innovation, 2, 45-57. https://doi.org/10.1016/j.biori.2017.10.004.
  30. Segarra G, Puopolo G, Giovannini O, Pertot I (2015) Stepwise flow diagram for the development of formulations of non spore-forming bacteria against foliar pathogens: The case of Lysobacter capsici AZ78. Journal of Biotechnology, 216, 56-64. https://doi.org/10.1016/j.jbiotec.2015.10.004.
  31. Slininger PJ, Schisler DA (2013) High-throughput assay for optimising microbial biological control agent production and delivery. Biocontrol Science and Technology, 23, 920-943. https://doi.org/10.1080/09583157.2013.808739.
  32. Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7905. Journal of Basic Microbiology, 47, 513-517. https://doi.org/10.1002/jobm.200700224.
  33. Kundu D, Hazra C, Chaudhari A (2016) Biodegradation of 2,6-dinitrotoluene and plant growth promoting traits by Rhodococcus pyridinivorans NT2: Identification and toxicological analysis of metabolites and proteomic insights. Biocatalysis and Agricultural Biotechnology, 8, 55-65. https://doi.org/10.1016/j.bcab.2016.08.004.