• Title/Summary/Keyword: Residual currents

Search Result 124, Processing Time 0.027 seconds

Numerical simulation of residual currents by diagnostic multi-level model in Kwangyang Bay, Korea (다층 진단 모델에 의한 광양만의 잔차류 수치 실험)

  • 추효상;이병걸;이규형
    • Journal of Environmental Science International
    • /
    • v.11 no.1
    • /
    • pp.41-56
    • /
    • 2002
  • In order to estimate the quantitative roles of the tide induced residual currents, density currents and wind driven currents on the residual currents in Kwangynag Bay Korea, numerical experiments with a diagnostic multi-level model were carried out. Density currents were calculated from the temperature and salinity data observed in January, May, August and November 1998. Anti-clockwise circulations are formed at the western inner part of the bay, the location from the east of Myodo Is. to the south of POSCO Co. and the place between Yeosu peninsula and Namhae Is. from the calculation results of the tide induced residual currents. Velocities of the density currents are less than 3cm/s at the western inner part of the bay and about 5cm/s at the southern entrance of the bay. Density currents get strong in summer and weak in autumn. Wind driven currents at the surface layer flow in the directions of the given winds which are the daily mean winds when the temperature and salinity observations are carried out. In the middle and lower layers, however the wind driven currents flow in the opposite direction to the surface currents as supplementary currents. The surface wind driven currents are greater than the tide induced residual currents or the density currents. The calculated residual currents including the tide induced residual currents, density currents and wind driven currents agree with the results of the current observations approximately. In the Bay, the wind driven currents affect on the residual currents greatestly and tide induced residual currents and density currents do in the second place and the third place.

Field Observations and Hydraulic Model Experiments of Tidal Currents in Chinhae Bay (진해만 조류의 현장관측 및 수리모형실험)

  • CHANG Sun-Duck;KIM Cha-Kyum;LEE Jong-Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.4
    • /
    • pp.346-352
    • /
    • 1993
  • Tidal currents and tidal residual currents in Chinhae Bay are investigated by the field observations and hydraulic experiments during the spring tide and neap tide. The horizontal and vertical scales of the model are l/2,000 and 1/159, respectively. The hydraulic model results roughly coincide with the field data. Maximum tidal currents during the spring tide and neap tide in the central channel of Chinhae Bay are strong as about 90 and 30cm/s respectively, and strong tidal residual currents take place. Maximum tidal currents during the spring tide and neap tide in the western and northern part of the bay are weak as below 30 and 10cm/s respectively, and also tidal residual currents are weak. Tidal residual currents rotating clockwise occur in the central part of the bay. Northward tidal residual currents in the northern part of Kajo-do are predominant, whereas southward ones in the southern part of Kajo-do are remarkable. The surface currents in the bay depend strongly on the wind and river flow, and it seems to be remarkable during the neap tide.

  • PDF

Tidal and tide-induced residual currents around Hampyung Bay and Hajae Peninsula by numerical simulation (수치모형을 통한 함평만과 해제반도 주변해역의 조류 및 조석잔차류 분포)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.2
    • /
    • pp.114-125
    • /
    • 2020
  • In order to understand the currents around Hampyung Bay and Haeje Peninsula, 2D numerical simulations for tidal currents and tide-induced residual currents were carried out. Dominant semidiurnal tidal currents have reversing form and flow NNE-SSW from northern Haeje Peninsula to Songi Island, E-S at northern Haeje Peninsula and NNW-SSE in Hampyung Bay. In flood, a part of currents from Imja Island~Nakwhol Island flow along the main stream flowing northeast at offshore region and the rest flow into Hampyung Bay flowing east along the northern coast of Haeje Peninsula. In ebb, currents from Hampyung Bay flow west along the northern coast of Haeje Peninsula and run together with the main stream flowing southeast at offshore region. The currents create an anticyclonic circulation in flood and a cyclonic circulation in ebb around Haeje Peninsula including Hampyung Bay. Tidal currents are accumulated on Doripo which located at the entrance of Hampyung Bay and show high current velocities. Tidal currents and tide induced residual currents are weak at the inside of Hampyung Bay which has narrow entrance, shallow water depth and wide intertidal zone. An anticyclonic eddy is formed around Gaksi Island as a result of tide induced residual currents. In northern coast of Haeje Peninsula, slow constant currents flow east. It is expected that a gradual change of sediment and an increase of flushing time for suspended materials are carried by tidal currents occurring in Hampyung Bay.

The Characteristics of Coastal Currents to the Northwest of the Taean Peninsula in the Yellow Sea (서해 태안반도 북서 연안해역에서의 연안류 특성)

  • Shin, Hong-Ryeol
    • Ocean and Polar Research
    • /
    • v.27 no.4
    • /
    • pp.433-441
    • /
    • 2005
  • To investigate the characteristics of tidal currents and water circulation in the coastal waters off the Taean Peninsula, tidal currents and sea levels were measured at the study area from 1998 to 2004. In the central waterway to the south of Changan Sand Ridge, mean speed of tidal currents and residual currents were 74.0cm/s, 17.8cm/s respectively; the dominant residual currents flowed northeastward, and the amplitudes of semi-diurnal components $(M_2,\;S_2)$ were larger than diurnal components $(O_1,\;K_1)$. The flood and ebb tidal currents were northeastward and southwestward, respectively, and each period was about 6 hours for them, which was consistent with the period of sea levels at the study area. In the coastal region near Hakampo, Taean, mean velocities of tidal currents and residual currents were 46.1cm/s, 30.8cm/s respectively, and the dominant residual currents flowed southwestward. The amplitudes of shallow water constituents $(M_4,\;MS_4)$ were relatively laige, which were weaker to the northeastern coastal region off Mineodo. The northeastward flow continued for about $2{\sim}3$ hours, while the southwestward flow continued for about $9{\sim}10$ hours near Hakampo during the tidal period. Tidal currents flowed northeastward in the central area of the waterway during the period from the Low Water Level (LWL) to the High Water Level (HWL). While the currents in the coastal region flowed northeastward for the first 3 hours after the LWL, southwestward counter-currents flowed between 3 and 6 hours after the LWL. During the period from the HWL to the LWL, the dominant currents flowed southwestward in the study area except to the northeastern coastal region off Mineodo. Along the shorelines, the counter-currents flowed northward between 4 and 6 hours after the HWL. It seems that the counter-currents near the coastal region are caused by the topography and the geography of the shorelines at the study area.

Two-Dimensional Hydraulic and Numerical Modeling of tidal Currents in Chinhae Bay (鎭海灣 潮流의 2차월 水利 및 數値 모델링)

  • 김차겸;장선덕
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.83-94
    • /
    • 1994
  • Two-dimensional tidal and tidal residual currents in Chinhae Bay are investigated by field observations, hydraulic and numerical experiments. The results of hydraulic and numerical model experiments roughly coincide with the field measurements. Maximum tidal currents during the spring and neap tides in Kaduk and Kyunnaeryang channel and the central channel of Chinhae Bay are strong as 90 to 110 and 30 to 40 cm/s respectively, and strong tidal residual currents having numerous eddies take place. Maximum tidal currents during the spring and neap tides in the western and northern parts of the bay are weak as below 30 and 10 cm/s respectively, and also tidal residual currents are relatively weak. Tidal residual currents in the northern part of Kajo-do go toward the north, whereas the currents in the southern part move down the bay, and the currents rotating clockwise occur around Bu-do. The surface currents in the bay depend strongly on the wind and river inflow, and such phenomena are more remarkable during he neap tide than the spring tide.

  • PDF

The Effects of Tidal Currents and Residual Flow on the Sea Dike (해안방조제가 조류 및 잔류흐름에 미치는 영향)

  • Park, Joong-Cheol;Yoon, Young-Ho;Shin, Moon-Seup;Manh, Dinh-Van
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.83-96
    • /
    • 2005
  • Three-dimensional hydrodynamic numerical simulation is carried out to investigate the effects of the coastal land reclamation on the marine hydrodynamics, environment and ecosystem. The changes of tide, tidal currents and residual currents, including tide-induced, wind driven and density driven components due to the construction of the sea dike system are simulated numerically The governing equations transformed into o-coordinates are solved by an implicit finite difference method. The numerical model is calibrated using the tide charts of 4 major tidal constituents, M$_2$, S$_2$, $K_1$ and $O_1$. The numerical solutions show that there are significant changes of residual currents, especially induced by both tidal and wind-driven currents.

Reliability on the Unintended Trips of Residual Current Operated Circuit Breakers due to Surge Currents (서지전류에 의한 누전차단기의 의도하지 않은 트립에 대한 신뢰성)

  • Lee, Bok-Hee;Kim, Sang-Hyun;Kim, Yoo-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.79-84
    • /
    • 2012
  • As the huge economical loss and function paralysis of information technology-based systems can be caused by the misoperation of residual current devices(RCDs) due to surge voltages and currents, RCDs shall not operate by surge currents. In this paper, in order to evaluate the reliability of residual current operated circuit-breakers with integral overcurrent protection for household and similar uses((RCBOs) stressed by surges, the unintended trip characteristics of RCBOs under surge currents were experimentally investigated using the combination wave generator. Seven different types of single-phase RCBOs being present on the domestic market were investigated according to KS C IEC 61009-1 standard. As a result, all kinds of specimens were satisfied the requirements for 0.5 [${\mu}s$]/100[kHz] ring wave impulse currents. Most of specimens stressed by the 8/20[${\mu}s$] impulse current tripped at least one or more, and some of them were broken down during consecutive tests. It was found that only one type of specimens meets the L-N mode immunity to the combination wave of 1.2/50[${\mu}s$] impulse voltage and 8/20[${\mu}s$] impulse current.

Analysis of Wave and Current in Anmok Coastal Waters (안목해안의 파랑과 흐름 분석)

  • Lim, Hak-Soo;Kim, Mujong
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.1
    • /
    • pp.7-19
    • /
    • 2017
  • In this study, waves and currents observed by acoustic AWAC, VECTOR and Aquadopp Profiler in Anmok coastal waters were analysed to account for the variability of wave and current and to understand the mechanism of sediment transport generated by wave-induced current in the surf-zone. The monthly variation of wave and residual currents were analysed and processed with long-term observed AWAC data at station W1, located at the water depth of about 18m measured during from February 2015 to September 2016. Wave-induced currents were also analysed with intensive field measurements such as wave, current, suspended sediment, and bathymetry data observed at the surf-zone during in winter and summer. The statistical result of wave data shows that high waves coming from NNE and NE in winter (DEC-FEB) are dominant due to strong winds from NE. But in the other season waves coming from NE and ENE are prevalent due to the seasonal winds from E and SE. The residual currents with southeastern direction parallel to the shoreline are dominant throughout a year except in winter showing in opposite direction. The speed of ebb-dominant southeastern residual currents decreasing from surface to the bottom is strong in summer and fall but weak in winter and spring. By analysing wave-induced current, we found that cross-shore current were generated by swell waves mainly in winter with incoming wave direction about $45^{\circ}$ normal to the shoreline. Depending on the direction of incoming waves, longshore currents in the surf-zone were separated to southeastern and northwestern flows in winter and summer respectively. The variation of observed currents near crescentic bars in the surf-zone shows different direction of longshore and cross-shore currents depending on incoming waves implying to the reason of beach erosion generating the beach cusp and sandbar migration during high waves at Anmok.

Numerical experiments for the changes of currents by reclamation of land in Kwangyang Bay (매립으로 인한 광양만의 유동변화 수치실험)

  • 추효상
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.637-650
    • /
    • 2002
  • This study presents an investigation of the changes of the currents in Kwangyang Bay due to the construction of harbor, reclamation and coastal developments. Currents were simulated by the numerical experiments with a diagnostic multi-level model and using the seasonal oceanographic data of temperature, salinity and ocean current. The values of kinetic and potential energies for the currents were calculated in cases of three topographical changes; before coastal developments, the existing state and after completion of the development project in Kwangyang Bay. The changes of currents due to the coastal developments are as follow; Kinetic energies of tide induced residual currents and wind driven currents decreased by 35~40 percent and 5 percent respectively, however those of density currents increased by 10 percent since the decrease of the coastal areas. Kinetic energy of residual currents including tide induced residual currents, density currents and wind driven currents reduced by 10 percent compared with before the coastal developments. Decrease of current velocity was greatest in summer. Therefore, in summer it was assumed that the Kwangyang Bay is more easily polluted by stratification and decrease of residual current than before the coastal developments carried out.

A Study of Distribution of Jellyfish by Particle Numerical Experiment in Masan Bay (마산만에서 입자수치실험에 의한 해파리 분포연구)

  • Choi, Min-Ho;Ryu, Tai-Gwan;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.4
    • /
    • pp.335-343
    • /
    • 2016
  • The spatio-temporal distribution of jellyfish in Masan Bay was investigated in this study using a numerical model. First, a three-dimensional hydrodynamic model (POM) was constructed,taking into account residual flows, tides, temperature, salinity, and wind effects. A particle tracking model based on residual flow was then used to investigate the jellyfish present in Masan Port, referred to as the Heavy Industry and Gapo New Port in Masan. Jellyfish distribution was concentrated with maximum (2,533 individual) in the North Sea near Machang Bridge. Itcan be concluded that this concentration was due to multi-directional residual flows and topography effects. Residual flow currents are a dominant factor in understanding the aggregation of jellyfish, and this study used a numerical simulation of tide-induced residual currents, wind-driven currents and density currents in distinct cases to thoroughly address the topic. As a result, wind-driven currents (effect of the wind) was found to be superior to other components as an influence on the distribution of jellyfish near Machang Bridge and Modo in Masan Bay.