• Title/Summary/Keyword: Residual Test

Search Result 1,822, Processing Time 0.045 seconds

Effects of dentin moisture on the push-out bond strength of a fiber post luted with different self-adhesive resin cements

  • Turker, Sevinc Aktemur;Uzunoglu, Emel;Yilmaz, Zeliha
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.4
    • /
    • pp.234-240
    • /
    • 2013
  • Objectives: This study evaluated the effects of intraradicular moisture on the pushout bond strength of a fibre post luted with several self-adhesive resin cements. Materials and Methods: Endodontically treated root canals were treated with one of three luting cements: (1) RelyX U100, (2) Clearfil SA, and (3) G-Cem. Roots were then divided into four subgroups according to the moisture condition tested: (I) dry: excess water removed with paper points followed by dehydration with 95% ethanol, (II) normal moisture: canals blot-dried with paper points until appearing dry, (III) moist: canals dried by low vacuum using a Luer adapter, and (IV) wet: canals remained totally flooded. Two 1-mm-thick slices were obtained from each root sample and bond strength was measured using a push-out test setup. The data were analysed using a two-way analysis of variance and the Bonferroni post hoc test with p = 0.05. Results: Statistical analysis demonstrated that moisture levels had a significant effect on the bond strength of luting cements (p < 0.05), with the exception of G-Cem. RelyX U100 displayed the highest bond strength under moist conditions (III). Clearfil SA had the highest bond strength under normal moisture conditions (II). Statistical ranking of bond strength values was as follows: RelyX U100 > Clearfil SA > G-Cem. Conclusions: The degree of residual moisture significantly affected the adhesion of luting cements to radicular dentine.

The Effect of the Core-shell Structured Meta-aramid/Epoxy Nanofiber Mats on Interfacial Bonding Strength with an Epoxy Adhesive in Cryogenic Environments (극저온 환경에서 에폭시 접착제의 물성 향상을 위한 나노 보강재의 표면 개질에 관한 연구)

  • Oh, Hyun Ju;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • The strength of adhesive joints employed in composite structures under cryogenic environments, such as LNG tanks, is affected by thermal residual stress generated from the large temperature difference between the bonding process and the operating temperature. Aramid fibers are noted for their low coefficient of thermal expansion (CTE) and have been used to control the CTE of thermosetting resins. However, aramid composites exhibit poor adhesion between the fibers and the resin because the aramid fibers are chemically inert and contain insufficient functional groups. In this work, electrospun meta-aramid nanofiber-reinforced epoxy adhesive was fabricated to improve the interfacial bonding between the adhesive and the fibers under cryogenic temperatures. The CTE of the nanofiber-reinforced adhesives were measured, and the effect on the adhesion strength was investigated at single-lap joints under cryogenic temperatures. The fracture toughness of the adhesive joints was measured using a Double Cantilever Beam (DCB) test.

Relationship between hardness and plastically deformed structural steel elements

  • Nashid, Hassan;Clifton, Charles;Ferguson, George;Hodgson, Micheal;Seal, Chris;Choi, Jay-Hyouk
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.619-637
    • /
    • 2015
  • A field based non-destructive hardness method is being developed to determine plastic strain in steel elements subjected to seismic loading. The focus of this study is on the active links of eccentrically braced frames (EBFs). The 2010/2011 Christchurch earthquake series, especially the very intense February 22 shaking, which was the first earthquake worldwide to push complete EBF systems into their inelastic state, generating a moderate to high level of plastic strain in EBF active links for a range of buildings from 3 to 23 storeys in height. Plastic deformation was confined to the active links. This raised two important questions: what was the extent of plastic deformation and what effect does that have on post-earthquake steel properties? A non-destructive hardness test method is being used to determine a relationship between hardness and plastic strain in active link beams. Active links from the earthquake affected, 23-storey Pacific Tower building in Christchurch are being analysed in the field and laboratory. Test results to date show clear evidence that this method is able to give a good relationship between plastic strain and demand. This paper presents significant findings from this project to investigate the relationship between hardness and plastic strain that warrant publication prior to the completion of the project. Principal of these is the discovery that hot rolled steel beams carry manufacturing induced plastic strains, in regions of the webs, of up to 5%.

Ecotoxicological Effects of NaDCC injection method in Ballast Water Management system on Marine Environments (NaDCC 주입 선박평형수 처리기술의 해양생태위해성에 대한 연구)

  • Kim, Tae won;Moon, Chang Ho;Kim, Young Ryun;Son, Min Ho
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.11a
    • /
    • pp.236-236
    • /
    • 2017
  • Effluent treated by an NaDCC injection method in Ballast water management system (BWMS) contains reactive chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on marine environment. WET testing was carried out for four marine pelagic and freshwater organisms, i.e., diatom Skeletonema costatum, Navicula pellicuosa, chlorophyta Dunaliella tertiolecta, Pseudokirchneriella subcapitata, rotifer Brachionus plicatilis, Brachionus calyciflorus and fish Cyprinodon variegatus, Pimephales promelas. The biological toxicity test revealed that algae was the only biota that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50% (EC50) values of 25-50%, 50-100% and >100%, respectively, at three water condition, but did not show any significant toxicities on other biota. Meanwhile, chemical analysis revealed that the BWMS effluent contained total residual oxidants (TROs) below $0.03{\mu}g/L$ and a total of 25 DBPs such as bromate, volatile halogenated organic compounds (VOCs), halogenated acetonitriles (HANs), halogenated acetic acids (HAAs), chloropicrin and Isocyanuric acid. Based on ERA, the 25 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. The ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the other DBPs did not exceed 1 for General harbor environment. However, four substances (Isocyanuric acid, Tribromomethane, Chloropicrin and Monochloroacetic acid) were exceed 1 for Nearship environment. But observed toxicity in the test water on algal growth inhibition would be mitigated by normal dilution factor of 5 applied for nearship exposure. Thus, our results of WET testing and ERA showed that the BWMS effluent treated by NaDCC injection method would have no adverse impacts on marine environment.

  • PDF

A Study on the Basic Design for Platform Support Vessel (PSV) and Hull Form Development for Enhancement of Resistance & Propulsion Performance (해양작업지원선(PSV)의 기본설계 및 저항추진 성능 향상을 위한 선형개선 방안 연구)

  • Yum, Jong-Gil;Kang, Kuk-Jin;Lee, Young-Yeon;Lee, Chun-Ju;Ok, Kun-Do
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.196-204
    • /
    • 2018
  • Present paper shows the basic design procedure for platform support vessel operating in open sea, and hull form development process. General design concept considering the operating mission, operating sea condition and shipping freight, etc. is explained shortly. For the hull form design, the initial hull form was designed based on the reference PSVs. The resistance and propulsion test results for the initial hull form with twin Azimuth thruster were analyzed and a few items for improvement were derived. At the next stage, main parameters including Length, Cp-curve, Cb, Lcb, etc. were changed totally for the hull form improvement. Furthermore, 3 different bulbous bows for the fore-body design to reduce the wave resistance and after-body design to reduce the residual resistance were carried out. The best hull form among the 3 fore-bodies with same after-body was selected through the comparison of wave resistance calculation results. Twin ducted Azimuth thruster with the smaller propeller diameter than the former were adapted to increase the propulsive efficiency. The final hull form with the twin Azimuth thruster was evaluated to satisfy more than the target design speed 14 knots in sea condition with sea margin 15% at the 5,000kW BHP through the model test in KRISO.

Isobaric Vapor-Liquid Equilibrium of 1-propanol and Benzene System at Subatmospheric Pressures (일정압력하에서 1-propanol/benzene 계의 기-액 상평형)

  • Rho, Seon-Gyun;Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.222-228
    • /
    • 2018
  • Benzene is one of the most widely used basic materials in the petrochemical industry. Generally, benzene exists as a mixture with alcohols rather than as a pure substance. Further, the alcohols-added mixtures usually exhibit an azeotropic composition. In this context, knowledge of the phase equilibrium behavior of the mixture is essential for its separation and purification. In this study, the vapor-liquid equilibrium data were measured in favor of a recirculating VLE apparatus under constant pressure for the 1 - propanol / benzene system. The measured vapor - liquid equilibrium data were also correlated by using the UNIQUAC and WILSON models and the thermodynamic consistency test based on the Gibbs/Duhem equation was followed. The results of the phase equilibrium experiment revealed RMSEs (Root Mean Square Error) and AADs (Average Absolute Deviation) of less than 0.05 for both models, indicating a good agreement between the experimental value and the calculated value. The results of the thermodynamic consistency test also confirmed through the residual term within ${\pm}0.2$.

Dispersion, Speciation and Adsorption Treatment of Heavy Metals in the Vicinity of the Shi-Heung Cu-Pb-Zn Mine (시흥 Cu-Pb-Zn 광산 주변에서의 중금속원소들의 분산 및 존재형태와 흡착처리)

  • Hwang, Ho Song;Chon, Hyo Taek
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.455-467
    • /
    • 1995
  • In order to investigate the dispersion patterns and speciations of Cu, Pb, Zn and Cd in soils, stream sediments and stream waters, geochemical studies of soil, stream sediment and stream water samples collected in the vicinity of the Shi-Heung Cu-Pb-Zn mine was carried out Cation exchange capacity measurement, size analysis, X-ray diffraction analysis and batch test were performed to select applicable soil for adsorption treatment The average content of Cu, Pb, Zn and Cd in soils collected from tailings and ore dressing plant is 1084 ppm, 2292 ppm, 3512 ppm and 29.2 ppm, respectively, and therefore, tailings and ore dressing plant site may be the major contamination sources in this study area. The mean content of Cu, Pb, Zn and Cd in stream sediments is extremely high up to 794 ppm, 1633 ppm, 2946 ppm and 25.2 ppm, respectively. Tailing particles and heavy metal ions are dispersed along the tributary system. Results from the sequential extraction analysis indicate; (1) most of Cu is bound to organic matters and sulphides, (2) fraction of Pb is mainly bound to Fe and Mn oxides. Most of Zn is largely bound to Fe and Mn oxides and residual fraction. Ion exchangeable fraction of Cd is relatively higher than those of Cu, Pb and Zn. Batch test on soils collected from the kaolinite and/or pyrophyllite mines and from the control areas was carried out to select an applicable soil samples for adsorption treatment The sample, S10, collected from the control area 2 (clay content 33.2%) shows the highest $K_d$ (distribution coefficient). Organic content in soils and several clay minerals shows relatively good correlation with $K_d$. It means that applicable soils for adsorption treatment of heavy metals show high organic and clay content.

  • PDF

ROAD CROWN, TIRE, AND SUSPENSION EFFECTS ON VEHICLE STRAIGHT-AHEAD MOTION

  • LEE J-H.;LEE J. W.;SUNG I. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.183-190
    • /
    • 2005
  • During normal operating conditions, a motor vehicle is constantly subjected to a variety of forces, which can adversely affect its straight-ahead motion performance. These forces can originate both from external sources such as wind and road and from on-board sources such as tires, suspension, and chassis configuration. One of the effects of these disturbances is the phenomenon of vehicle lateral-drift during straight-ahead motion. This paper examines the effects of road crown, tires, and suspension on vehicle straight-ahead motion. The results of experimental studies into the effects of these on-board and external disturbances are extremely sensitive to small changes in test conditions and are therefore difficult to guarantee repeatability. This study was therefore conducted by means of computer simulation using a full vehicle model. The purpose of this paper is to gain further understanding of the straight-ahead maneuver from simulation results, some aspects of which may not be obtainable from experimental study. This paper also aims to clarify some of the disputable arguments on the theories of vehicle straight-ahead motion found in the literature. Tire residual aligning torque, road crown angle, scrub radius and caster angle in suspension geometry, were selected as the study variables. The effects of these variables on straight-ahead motion were evaluated from the straight-ahead motion simulation results during a 100m run in free control mode. Examination of vehicle behavior during straight-ahead motion under a fixed control mode was also carried out in order to evaluate the validity of several disputable arguments on vehicle pull theory, found in the literature. Finally, qualitative comparisons between the simulation results and the test results were made to support the validity of the simulation results.

Thermal-hydraulic Analysis of Operator Action Time on Coping Strategy of LUHS Event for OPR1000 (OPR1000형 원전의 최종열제거원 상실사고 대처전략 및 운전원 조치 시간에 따른 열수력 거동 분석)

  • Song, Jun Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.121-127
    • /
    • 2020
  • Since the Fukushima nuclear accident in 2011, the public were concerned about the safety of Nuclear Power Plants (NPPs) in extreme natural disaster situations, such as earthquakes, flooding, heavy rain and tsunami, have been increasing around the world. Accordingly, the Stress Test was conducted in Europe, Japan, Russia, and other countries by reassessing the safety and response capabilities of NPPs in extreme natural disaster situations that exceed the design basis. The extreme natural disaster can put the NPPs in beyond-design-basis conditions such as the loss of the power system and the ultimate heat sink. The behaviors and capabilities of NPPs with losing their essential safety functions should be measured to find and supplement weak areas in hardware, procedures and coping strategies. The Loss of Ultimate Heat Sink (LUHS) accident assumes impairment of the essential service water system accompanying the failure of the component cooling water system. In such conditions, residual heat removal and cooling of safety-relevant components are not possible for a long period of time. It is therefore very important to establish coping strategies considering all available equipment to mitigate the consequence of the LUHS accident and keep the NPPs safe. In this study, thermal hydraulic behavior of the LUHS event was analyzed using RELAP5/Mod3.3 code. We also performed the sensitivity analysis to identify the effects of the operator recovery actions and operation strategy for charging pumps on the results of the LUHS accident.

Mechanical and Thermal Characteristics of Cement-Based Composite for Solar Thermal Energy Storage System (태양열 에너지 저장시스템 적용을 위한 시멘트 기반 복합재료의 역학 및 열적 특성)

  • Yang, In-Hwan;Kim, Kyoung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.9-18
    • /
    • 2016
  • The thermal and mechanical properties of fiber-reinforced cement-based composite for solar thermal energy storage were investigated in this paper. The effect of the addition of different cement-based materials to Ordinary Portland cement on the thermal and mechanical characteristics of fiber-reinforced composite was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results showed that the residual compressive strength of mixtures with OPC and slag was greatest among cement-based composite. Thermal conductivity of mixtures including graphite was greater than that of any other mixtures, indicating favor of graphite for improving thermal transfer in terms of charging and discharging in thermal energy storage system. The addition of CSA or zirconium increased specific heat of fiber-reinforced cement-based composite. Test results of this study could be actually used for the design of thermal energy storage system in concentrating solar power plants.