• Title/Summary/Keyword: Reservoir yield

Search Result 69, Processing Time 0.033 seconds

The Characteristics Analysis for Sediment yield in Imha Reservoir Watershed using SWAT Model (SWAT 모형을 이용한 임하댐 유역 토사 유출 성향 분석 연구)

  • Shin, Hyun-Suk;Kang, Du-Kee;Choi, Young-Don;Kal, Byung-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1920-1924
    • /
    • 2007
  • 본 연구에서는 SWAT 모형의 임하댐 유역에 대한 적용을 통하여 토사 유출 모의와 관련된 주요 매개변수들을 보정하고, 보정된 매개변수를 적용하여 유역에 대한 토사 유출을 분석하였다. 모형 구성 자료로는 임하댐 유역 청송, 영양, 부남, 석보, 일월의 1997년부터 2006년까지의 10년간의 강우자료를 사용하였으며 DEM도와 토지이용도, 토양도를 이용하여 유역 모델을 구축하였다. 유출 보정 자료로는 임하댐 일 유입량과 낙동강 오염총량제 지점인 반변과 용전 지점의 일유출량을 이용하였다. 특히, 임하댐에 유입되는 토사량에 대한 토사 유출 성향을 분석하여 유역의 토사 전달율(Soil Delivery Ratio)과 토사 발생지도(Sediment yield map)를 제작하여 각 소유역에 대한 토사 유출 관리를 위한 기초 자료로서 사용하게 될 것이다.

  • PDF

Effect of Sirikit Dam Operation Improvement on water shortage situations due to the land use and climate changes from the Nan Basin

  • Koontanakulvong, Sucharit;Suthidhummajit, Chokchai
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.232-232
    • /
    • 2015
  • Land use and climate changes are the important factors to determine the runoff and sediment loads from the watershed. The changes also affected to runoff volume/pattern to the dam operation and may cause flood and drought situations in the downstream area. Sirikit Dam is one of the biggest dams in Thailand which cover about 25 % of the runoff into the Central Plain where the Bangkok Capital is located. The study aims to determine the effect of land use change to the runoff/sediment volume pattern and the rainfall-runoff-sediment relationship in the different land use type. Field measurements of the actual rainfall, runoff and sediment in the selected four sub-basins with different type of land use in the Upper Nan Basin were conducted and the runoff ratio coefficients and sediment yield were estimated for each sub-basin. The effect of the land use change (deforestation) towards runoff/sediment will be investigated. The study of the climate change impact on the runoff in the future scenarios was conducted to project the change of runoff volume/pattern into the Sirikit Dam. The improvement of the Sirikit Dam operation rule was conducted to reduce the weakness of the existing operation rules after Floods 2011. The newly proposed dam operation rule improvement will then be evaluated from the water shortage situations in the downstream of Sirikit Dam under various conditions of changes of both land use and climate when compared with the situations based on the existing reservoir operation rules.

  • PDF

Evaluation of GIS-based Soil Erosion Amount with Turbid Water Data (탁수자료를 이용한 GIS 기반의 토사유실량 평가)

  • Lee, Geun-Sang;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.75-81
    • /
    • 2004
  • Because geological types and land cover conditions of Imha basin have a very weak characteristics to soil erosion, most soil particles (low into river and bring about high density turbidity in Imha reservoir when it rains a lot. This study used GIS-based RUSLE model and analyzed soil erosion to make basic data for the countermeasures of turbidity reduction in Imha reservoir. Total soil erosion amounts was evaluated as 5,782,829 ton/yr using rainfall data(2003) and especially Dongbu-basin was extracted as most source area or soil erosion among Imha sub-basin. Also it was evaluated that soil erosion amount by RUSLE model was suitable by applying turbidity survey data.

  • PDF

Estimation of Soil Loss into Sap-Gyo Reservoir Watershed using GIS and RUSLE (GIS와 RUSLE 기법을 이용한 삽교호유역의 토사 유실량 산정)

  • Kim, Man-Sik;Jung, Seung-Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.19-27
    • /
    • 2002
  • Prediction of exact soil loss yield has as important engineering meaning as prediction of exact flow measurement in a stream. The quantity of soil loss in a stream should be considered in planning and management of water resources and water quality such as design and maintenace of hydraulic structures : dams, weirs and seawalls, channel improvement, channel stabilization, flood control, design and operation of reservoirs and design of harbors. In this study, the soil loss of Sap-gyo reservoir watershed is simulated and estimated by RUSLE model which is generally used in the estimation of soil loss. The parameters of RUSLE model are selected and estimated using slope map, landuse map and soil map by GIS. These parameters are applied to RUSLE's estimating program. And soil loss under probability rainfall in different frequencies are estimated by recent 30 years of rainfall data of Sap-gyo reservoir watershed.

  • PDF

Transmission Loss from Voltage Drop in a DC Cable for a Floating Photovoltaic System in a Reservoir (저수지 내 수상태양광의 전압 강하에 의한 직류 송전 손실)

  • Bhang, Byeong Gwan;Woo, Sung Cheol;Lee, Wonbin;Choi, Jin Ho;Shin, SeungWook;Lee, ChulSung;Park, MiLan;Won, Changsub;Ahn, HyungKeun
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.47-57
    • /
    • 2020
  • In Floating PV (Photovoltaic) systems, PV modules are installed on water by utilizing the surface of idle water such as a reservoir and multipurpose dam. A floating PV system, therefore, has the advantage of efficiency in national land use and improved energy yield owing to cooling effect compared to on-land PV systems. Owing to the limitation of installation environment for a floating PV system, the system, however, has the disadvantage of an increase in transmission distance of DC (Direct current) cables. A longer transmission distance of a DC cable results in greater power loss due to a voltage drop. This leads to a decline in economic feasibility for the floating PV system. In this paper, the economic analysis for 10 floating PV systems installed in a reservoir has been conducted in terms of a change in annual power sales according to the variation of transmission losses depending on the factors affecting the voltage drop, such as transmission distance, cross-section area of underwater cable, the presence of joint box, and PV capacity.

Impacts on Residence Time and Water Quality of the Saemangeum Reservoir Caused by Inner Development (새만금 내부개발이 체류시간 및 수질변화에 미치는 영향)

  • Yoo, Sang-Cheol;Suh, Seung-Won;Lee, Hwa-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.186-197
    • /
    • 2012
  • In order to understand hydrodynamic and water quality changes on the Saemangeum reservoir in accordance to inner development plan, intensive numerical simulations using EFDC have been done. Due to inner dike construction and proposed dredging plans, stratification might occur and yield flow field change. It should be noticed that very conditional gate operation schedule adjusting target water elevation of -1.5 meter causes severe stratification and hence plays an important role in poor water qualities. By using random walk particle tracking residence simulations, it is found that hydrodynamic characteristics depends greatly on riverine inflow conditions. It is also inferred that the northern part of the Mangyeong reservoir behaves as a dead zone and acts as major reasoning of water quality deterioration owing to benthic flux from long-term residing settled sediment.

Development of Methods for Estimating Sediment Yield Rate(II) - Development of Models - (비유사량(比流砂量) 추정방법의 개발(II) - 모형 개발 및 검토 -)

  • Kim, Chang Wan;Kim, Hyoung Seop;Yu, Kwon Kyu;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.131-140
    • /
    • 1993
  • The major objective of this study is to develop practical methods for estimating sediment yield rates of medium size watersheds of which areas range from 200 to $2,000km^2$ In the first phase of the study that were presented in the companion paper followed by this paper, a methodology for estimating sediment yield rate was introduced and a total of 13 data points including eight sampled river-sediment data and five reservoir deposit data were collected. In this study, a three-parameter empirical model and a six-parameter rating model, both of which are based on empiricism, have been developed. By limited comparisons, the models developed in this study appear to be more reliable and applicable than the existing ones. According to the sediment yield data collected and the estimations by the models, meanwhile, the lowest value for the sediment yield rate of medium size watersheds in Korea is estimated to be about $100tons/km^2/yr$, and the maximum to be about $1,000tons/km^2/yr$.

  • PDF

Development of Methods for Estimating Sediment Yield Rate (I) - Modeling Strategies and Field Data Analysis - (비유사량(沸流砂量) 추정방법의 개발(I) -개발방향의 설정 및 자료의 수집·분석 -)

  • Yu, Kwon Kyu;Kim, Chang Wan;Kim, Hyoung Seop;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.121-130
    • /
    • 1993
  • The major objective of this study is to develop practical methods for estimating sediment yield rates of medium size watersheds of which areas range from 200 to $2,000km^2$. For this purpose, this study adopts an empirical method of statistical approach and another empirical method of weighting the watershed characteristics factors. A total of 13 data points for sediment yield rate, including five data points from reservoir deposit data and eight data points from sampled river-sediment data have been collected. Meanwhile, seven factors that may affect the sediment yield rate of a watershed have been selected. They are drainage density, rainfall erosivity, ground cover and land use, soil erodibility, topography, river-bed material characteristics, and watershed area. In the companion paper following this paper, methods for estimating sediment yield rate are to be developed using the 13 data points collected and seven watershed characteristics factors selected in this study.

  • PDF

Drought Estimation Model Using a Evaporation Pan with 50 mm Depth (50mm 깊이 증발(蒸發) 팬을 이용한 한발 평가 모델 설정)

  • Oh, Yong Taeg;Oh, Dong Shig;Song, Kwan Cheol;Um, Ki Cheol;Shin, Jae Sung;Im, Jung Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.92-106
    • /
    • 1996
  • Imaginary grass field was assumed suitable as the representative one for simplified estimation of local drought, and a moisture balance booking model computing drought was developed with the limited numbers of its determining factors, such as crop coefficient of the field, reservoir capacity of the soil, and the beginning point of drought as defined by soil moisture status. The maximum effective rainfall was assumed to be the same as the available free space of soil reservoir capacity. The model is similar to a definite depth evaporation pan, which stores rainfall as much as the available free space on the water in it and consumes the water by evaporation. When the pan keeps water less than a certain defined level, it is droughty. The model simulates soil moisture deficit on the assumed grass field for the drought estimation. The model can assess the water requirement, drought intensity, and the index of yield decrement due to drought. The influencing intensity indices of the selected factors were 100, 21, and 16 respectively for crop coefficient, reservoir capacity, and drought beginning point, determined by the annual water requirements as influenced by them in the model. The optimum values of the selected factors for the model were respectively 58% for crop coefficient defined on the energy indicator scale of the small copper pan evaporation, 50 mm for reservoir capacity on the basis of the average of experimentally determined values for sandy loam, loam, clay loam, and clay soils, and 65% of the reservoir capacity for the beginning point of drought.

  • PDF

An Evaluation Method of Water Supply Reliability for a Dam by Firm Yield Analysis (보장 공급량 분석에 의한 댐의 물 공급 안전도 평가기법 연구)

  • Lee, Sang-Ho;Kang, Tae-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.467-478
    • /
    • 2006
  • Water supply reliability for a dam is defined with a concept of probabilistic reliability. An evaluation procedure of the water supply reliability is shown with an analysis of long term firm yield reliability. The water supply reliabilities of Soyanggang Dam and Chungju Dam were evaluated. To evaluate the water supply reliability, forty one sets of monthly runoff series were generated by SAMS-2000. HEC-5 model was applied to the reservoir simulation to compute the firm yield from a monthly data of time series. The water supply reliability of the firm yield from the design runoff data of Soyanggang Dam is evaluated by 80.5 % for a planning period of 50 years. The water supply reliability of the firm yield from the historic runoff after the dam construction is evaluated by 53.7 %. The firm yield from the design runoff is 1.491 billion $m^3$/yr and the firm yield from the historic runoff is 1.585 billion $m^3$/yr. If the target draft Is 1.585 billion $m^3$/yr, additional water of 0.094 billion $m^3$ could be supplied every year with its risk. From the similar procedures, the firm yield from the design runoff of Chungju Dam is evaluated 3.377 billion $m^3$/yr and the firm yield from the historic runoff is 2.960 billion $m^3$/yr. If the target draft is 3.377 billion $m^3$/yr, water supply insufficiency occurs for all the sets of time series generated. It may result from overestimation of the spring runoff used for design. The procedure shown can be a more objective method to evaluate water supply reliability of a dam.