• Title/Summary/Keyword: Reservoir operation and management

Search Result 156, Processing Time 0.033 seconds

A Study on the Performance Prediction Model for Life Cycle Maintenance of Reservoir (저수지 생애주기 유지관리를 위한 성능저하예측 모델 연구)

  • Lee, Huseok;Kim, Ran-Ha;Cho, Choong-Yuen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.568-574
    • /
    • 2021
  • According to the Framework Act on Sustainable Infrastructure Management, which has been enforced since 2020, reservoirs should be managed to minimize life cycle costs caused by aging through preemptive management such as systematic maintenance and performance improvement. For maintenance in consideration of the life cycle, it is essential to derive the end of life due to continuous performance degradation as the common period increases. For this purpose, it is necessary to develop a performance-predicting model for reservoirs. In this study, a reservoir was divided into main complex facilities to develop a model for the maintenance of the life cycle. A model was developed for each facility. For model development, maintenance information data were collected under management by the Rural Community Corporation. The data available for model development were selected by analyzing the collected data. The developed model was used to predict the expected life expectancy of the reservoir in the current maintenance system and the expected life expectancy in the case of no action. By using the developed model, it is expected that it will be possible to support decision making in operation management and maintenance while considering the life cycle of the reservoir.

Assessment of Future Climate and Land Use Change Impact on Hydrology and Stream Water Quality of Anseongcheon Watershed Using SWAT Model (I) (SWAT 모형을 이용한 미래 기후변화 및 토지이용 변화에 따른 안성천 유역 수문 - 수질 변화 분석 (I))

  • Lee, Yong Jun;Park, Jong Yoon;Park, Min Ji;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.653-663
    • /
    • 2008
  • The purpose of this study is to establish a database of weather, hydrology, point source pollution management, reservoir release and tillage management for SWAT model evaluation of Anseongcheon watershed ($370.1km^2$, the upstream of Gongdo water level gauging station), and to use them for the following research of future climate and land use change impact on streamflow and stream water quality. It is expected that the database can achieve the practical analysis of current watershed hydrologic and environmental condition. The model calibration and validation were conducted using the constructed database. The model results showed that the tillage management affected the temporal shift of pollutant loads, and changed the flow pattern of pollutant transport through cultivation area. It was identified that the April and May irrigation water supply from the agricultural reservoir also affected the streamflow of downstream. The data application of pollutants treatment facilities and tillage management of cultivation area showed about 10% difference in the simulation results of stream water quality. The data establishment of agricultural reservoir operation, the tillage management of cultivated area within the watershed and the attributes inclusion of pollutants treatment facilities were proved to be important in SWAT model evaluation. The results of model setup in this study are expected for more reliable model application in the following research of future climate and land use change impact on hydrology and stream water quality of the study watershed.

Reservoir Operating System Using Sampling Stochastic Dynamic Programming for the Han River Basin (표본 추계학적 동적계획법을 사용한 한강수계 저수지 운영시스템 개발)

  • Eum, Hyung-Il;Park, Myung-Ky
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.67-79
    • /
    • 2010
  • Korea water resources corporation (K-Water) has developed the real-time water resources management system for the Nakdong and the Geum River basin to efficiently operate multi-purpose dams in the basins. This study has extended to the Han River basin for providing an effective ending target storage of a month to the real-time water resources management system using Sampling Stochastic Dynamic Programming (SSDP), consequently increasing the efficiency of the reservoir system. The optimization model were developed for three reservoirs, named Soyang, Chungju, and Hwacheon, with high priority in terms of the amounts of effective capacity and water supply for the basin. The number of storage state variable for each dam to set an optimization problem has been assigned from the results of sensitivity analysis. Compared with the K-water operating policy with the target water supply elevations, the optimization model suggested in this study showed that the shortfalls are decreased by 37.22 MCM/year for the required water demands in the basin, even increasing 171 GWh in hydro electronic power generation. In addition, the result of a reservoir operating system during the drawdown period applied to real situation demonstrates that additional releases for water quality or hydro electronic power generation would be possible during the drawdown period between 2007 and 2008. On the basis of these simulation results, the applicability of the SSDP model and the reservoir operating system is proved. Therefore, the more efficient reservoir operation can be achieved if the reservoir operating system is extended further to other Korean basins.

Climate change impact analysis on water supply reliability and flood risk using combined rainfall-runoff and reservoir operation modeling: Hapcheon-Dam catchment case (강우-유출 및 저수지 운영 연계 모의를 통한 기후변화의 이수안전도 및 홍수위험도 영향 분석: 합천댐 유역 사례)

  • Noh, Seong Jin;Lee, Garim;Kim, Bomi;Jo, Jihyeon;Woo, Dong Kook
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.765-774
    • /
    • 2023
  • Due to climatechange, precipitation variability has increased, leading to more frequentoccurrences of droughts and floods. To establish measures for managing waterresources in response to the increasing uncertainties of climate conditions, itis necessary to understand the variability of natural river discharge and theimpact of reservoir operation modeling considering dam inflow and artificialwater supply. In this study, an integrated rainfall-runoff and reservoiroperation modeling was applied to analyze the water supply reliability andflood risk for a multipurpose dam catchment under climate change conditions. Therainfall-runoff model employed was the modèle du Génie Rural à 4 paramètresJournalier (GR4J) model, and the reservoir operation model used was an R-basedmodel with the structure of HEC-Ressim. Applying the climate change scenariosuntil 2100 to the established integrated model, the changes in water supplyreliability and flood risk of the Happcheon Dam were quantitatively analyzed.The results of the water supply reliability analysis showed that under SSP2-4.5conditions, the water supply reliability was higher than that under SSP5-8.5conditions. Particularly, in the far-future period, the range of flood risk widened,and both SSP2-4.5 and SSP5-8.5 scenarios showed the highest median flood riskvalues. While precipitation and runoff were expected to increase by less than10%, dam-released flood discharge was projected to surge by over 120% comparedto the baseline

Gauging the climate-associated risks for paddy water management based on reservoir performance indices

  • Ahmad, Mirza Junaid;Cho, Gun-ho;Choi, Kyung-sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.515-515
    • /
    • 2022
  • Climate change is strongly threatening the performance of agricultural reservoirs, which are instrumental in ensuring uninterrupted water supplies for rice cultivation in Korea. In this study, various performance indices were derived and overall sustainability of the 400 agricultural reservoirs was evaluated in the context of climate change trends during 1973-2017. Rice crop evapotranspiration, irrigation water requirements, runoff generation in the upstream watershed, and volumetric evaporation losses were plugged into a water balance model to simulate the reservoir operation during the study period. Resilience, reliability, and vulnerability are the three main indicators of reservoir performance, and these were combined into a single sustainability metric to define the overall system credibility. Historical climate data analysis confirmed that the country is facing a gradual warming shift, particularly in the central and southern agricultural regions. Although annual cumulative rainfall increased over the last 45 years, uneven monthly rainfall distribution during the dry and wet seasons also exacerbated the severity and frequency of droughts/floods. For approximately 85% of the selected reservoirs, the sustainability ranged between 0.35 to 0.77, and this range narrowed sharply with time, particularly for the reservoirs located in the western and southern coast regions. The study outcomes could help in developing the acceptable ranges of the performance indices and implementing appropriate policy and technical interventions for improving the sustainability of reservoirs with unacceptable ranges of the performance indices.

  • PDF

Water Supply Alternatives for Drought by Weather Scenarios Considering Resilience: Focusing on Naju Reservoir (회복탄력성을 고려한 기상 시나리오별 가뭄 용수 공급방안: 나주호를 중심으로)

  • Park, JinHyun;Go, JeaHan;Jo, YoungJun;Jung, KyungHun;Sung, MuHong;Jung, HyoungMo;Park, HyunKyu;Yoo, SeungHwan;Yoon, KwangSik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.115-124
    • /
    • 2018
  • Resilience has been widely used in various fields including design and operation of infrastructures. The resilient infrastructures not only reduce the damage scale of various disasters but also reduce the time and cost required for restoration. However, resilience rarely applied to promote efficient management of agricultural infrastructures. Recently, drought is an aggravating disaster by climate change and need countermeasures. Therefore, we tried to demonstrate evaluating measures in case of drought under consideration of resilience. This study applied the robustness-cost index (RCI) to evaluate alternative solution of the supply problem of a large agricultural reservoir under drought conditions. Four structural alternatives were selected to estimate the robustness index (RI) and the cost index (CI) to obtain the RCI values. Structural alternatives are classified into temporary measures and permanent measures. Temporary measures include the development of a tube wells and the installation of the portable pump, while the permanent measures include the installation of a pumping stations and the pumping water to the reservoir (Yeongsan River-Naju reservoir). RCI values were higher in permanent measures than those of temporary measures. Initial storage of the reservoir also affected RCI values of the drought measures. Permanent measures installation and management of early stage of the reservoir storage shortage was identified as the most resilient system.

DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK MODELS SUPPORTING RESERVOIR OPERATION FOR THE CONTROL OF DOWNSTREAM WATER QUALITY

  • Chung, Se-Woong;Kim, Ju-Hwan
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.143-153
    • /
    • 2002
  • As the natural flows in rivers dramatically decrease during drought season in Korea, a deterioration of river water quality is accelerated. Thus, consideration of downstream water quality responding to changes in reservoir release is essential for an integrated watershed management with regards to water quantity and quality. In this study, water quality models based on artificial neural networks (ANNs) method were developed using historical downstream water quality (rm $\NH_3$-N) data obtained from a water treatment plant in Geum river and reservoir release data from Daechung dam. A nonlinear multiple regression model was developed and compared with the ANN models. In the models, the rm NH$_3$-N concentration for next time step is dependent on dam outflow, river water quality data such as pH, alkalinity, temperature, and rm $\NH_3$-N of previous time step. The model parameters were estimated using monthly data from Jan. 1993 to Dec. 1998, then another set of monthly data between Jan. 1999 and Dec. 2000 were used for verification. The predictive performance of the models was evaluated by comparing the statistical characteristics of predicted data with those of observed data. According to the results, the ANN models showed a better performance than the regression model in the applied cases.

  • PDF

Monitoring System and Irrigation Characteristics of Yi-dong Water District (농업용수 시험지구의 관측 및 물관리 특성)

  • Kim, Jin-Taek;Lee, Yong-Jig
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.13-16
    • /
    • 2002
  • Operation of experimental site on the rural water is necessary to research on the effective development and management of agricultural water. Hydrological data on the watershed runoff, reservoir storage, irrigation and drainage are measured and accumulated. For the monitoring system of the experimental site, four rainfall gauging stations and twenty-six water level gauging stations are established and operated. Analysis of measured data are processed for rainfall amount and intensity, water level and discharge.

  • PDF

Development of Hedging Rule for Drought Management Policy Reflecting Risk Performance Criteria of Single Reservoir System (단일 저수지의 위험도 평가기준을 고려한 가뭄대비 Hedging Rule 개발)

  • Park, Myeong-Gi;Kim, Jae-Han;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.501-510
    • /
    • 2002
  • During drought or impending drought period, the reservoir operation method is required to incorporate demand-management policy rule. The objective of this study is focused to the development of demand reduction rule by incorporating hedging-effect for a single reservoir system. To improve the performance measure of the objective function and constraints, we could incorporate three risk performance criteria proposed by Hashimoto et al. (1982) by mixed-integer programming and also incorporate successive linear programming to overcome nonlinear hedging term from the previous study(Shih et al., 1994). To verify this model, this hedging rule was applied to the Daechung multi-purpose dam. As a result, we could evaluate optimal hedging parameters and monthly trigger volumes.

Operating Status and Improvement Plans of Ten Wetlands Constructed in Dam Reservoirs in Korea (국내 10개 댐저수지 인공습지의 운영현황 및 개선방안)

  • Choi, Kwangsoon;Kim, Sea Won;Kim, Dong Sup;Lee, Yosang
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.431-440
    • /
    • 2014
  • To propose the improvement and management plans to strengthen the pollutant removal efficiency of dam reservoir's constructed wetlands(CWs), the operation status and configuration of CWs (including water depth, operational flow, water flow distribution, residence time, and pollutant removal efficiency, aspect ratio, open water/vegetation ratio etc.) were analyzed in 10 major wetlands constructed in dam reservoirs. The pollutant concentrations in the inflows of the studied CWs were lower than those of American and European constructed wetlands. Especially, organic matter concentrations in all of inflows were below 3 mg/L(as BOD) due to advanced treatment of sewage disposal plant and an intake of low concentration water during dry and normal seasons. The average removal efficiency of total nitrogen(TN) and total phosphorus(TP) for 10 CWs ranged from 7.6~67.6%(mean 24.9%) and -4.9~74.5%(mean 23.7%), respectively, showing high in wetlands treating municipal wastewater. On the other hand, the removal efficiency of BOD was generally low or negative with ranging from -133.3 to 41.7%. From the analysis of the operation status and configuration of CWs, it is suggested that the low removal efficiency of dam reservoir's CWs were caused by both structural (inappropriate aspect ratio, excessive open water area) and operational (neglecting water-level management, lack of facilities and operation for first flush treatment, lake of monitoring during rainy events) problems. Therefore, to enable to play a role as a reduction facility of non-point source(NPS) pollutants, an appropriate design and operation manuals for dam reservoir's CW is urgently needed. In addition, the monitoring during rainy events, when NPS runoff occur, must be included in operation manual of CW, and then the data obtained from the monitoring is considered in estimation of the pollutant removal efficiency by dam reservoir's CW.