• Title/Summary/Keyword: Reservoir Dams

Search Result 201, Processing Time 0.027 seconds

Effects of Dams and Water Use on Flow Regime Alteration of the Geum River Basin (금강 유역의 댐과 물이용에 의한 유황의 변동특성 분석)

  • Kang, Seong-Kyu;Lee, Dong-Ryul;Moon, Jang-Won;Choi, Si-Jung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.325-336
    • /
    • 2010
  • This study presents the alteration of flow regime by effects of dams and water use in the Geum River Basin. The surface water use rate and the Impounded Runoff (IR) index were examined to assess the pressure indicators of the flow alteration. We applied the flow duration curve, flow regime coefficient, flood and low-flow frequency analysis as well as Range of Variability Approach (RVA) to investigate the quantitative changes in natural flow regimes. The results indicate that the high flow decreased and low flow increased respectively compared to the natural flow regimes at eight gauging stations. The Geum river is regulated by 139 dams and reservoirs storing 24% of the annual mean discharge and has high surface water use rate of 36%. These indicators are main pressure factors to alter flow regimes.

Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions

  • Karabulut, Muhammet;Kartal, Murat E.
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.255-266
    • /
    • 2020
  • This study presents comparation of fixed and viscos boundary condition effects on three-dimensional earthquake response and performance of a RCC dam considering linear and non-linear response. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The Drucker-Prager material model is considered for concrete and foundation rock in the nonlinear time-history analyses. Besides, hydrodynamic effect was considered in linear and non-linear dynamic analyses for both conditions. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. The contact-target element pairs were used to model the dam-foundation-reservoir interaction system. The interface between dam and foundation is modeled with welded contact for both fixed and viscos boundary conditions. The displacements and principle stress components obtained from the linear and non-linear analyses are compared each other for empty and full reservoir cases. Seismic performance analyses considering demand-capacity ratio criteria were also performed for each case. According to numerical analyses, the total displacements and besides seismic performance of the dam increase by the effect of the viscous boundary conditions. Besides, hydrodynamic pressure obviously decreases the performance of the dam.

Measuring Water Volume of Reservoir by Echosounding (에코사운딩에 의한 저수지 담수량 산정에 관한 연구)

  • Choi, Byoung-Gil;Lee, Hyung-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.1 s.39
    • /
    • pp.55-59
    • /
    • 2007
  • This study is aimed to acquire the depth information and measure the water volume of reservoir using the robot-ship equipped with GPS and echosounder. Robot-ship is an automatic system for measuring exact depth and bed topography. According to field experiment results, measured water volume by the robot-ship data was not much exceeding 6.8% in comparison with existing water volume data, and it was guessed because of sediments of reservoir bottom. The robot-ship could be used to acquire economically and exactly the water depth and bed topography of reservoirs, dams, rivers and so on.

  • PDF

A Study on Measurement System for Water Volume of the Reservoir using Drone and Sensors (드론과 센서를 이용한 저수지 수량 측정 시스템에 관한 연구)

  • Kim, Hyeong-gyun;Hwang, Jun;Bang, Jong-ho
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.47-54
    • /
    • 2019
  • Social dredging of various river facilities, such as dams and agricultural reservoirs currently being constructed, should be done to ensure stable reservoirs. However, it is difficult to find a system that tells the exact amount of water in real-time in a reservoir or dam. These measurements require an automated system to collect and analyze highly accurate data in real time. In this study, we propose a method to measure the amount of water and soil of reservoir in real time through multi-division volume calculation using a drone, and this method can detect sediment conditions in real time and determine the exact timing and scale of dredging.

An Optimal Control Theory on Economic Benefits of Dam Management: A Case of Aswan High Dam in Egypt (최적제어 이론을 이용한 댐 토사관리방안 : 이집트 아스완 댐 사례)

  • Lee, Yoon;Kim, Dong-Yeub
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.41-55
    • /
    • 2010
  • This paper analyzes optimal watershed management focusing on reservoir-level sediment removal techniques. Although dams and reservoirs provide several benefits, sedimentation may reduce their storage capacity. As of today, the Aswan High Dam (AHD) in Egypt faces approximately 76% reduced life of the reservoir. Since the AHD is the major fresh water source in Egypt, sustainable use of this resource is extremely important. A model is developed to simultaneously determine optimal sediment removal strategies for upstream soil conservation efforts and reservoir-level sediment control. Two sediment removal techniques are considered: mechanical dredging and hydro-suction sediment removal system (HSRS). Moreover, different levels of upstream soil conservation efforts have introduced to control soil erosion, which is a major contributor of reservoir storage capacity reduction. We compare a baseline case, which implies no management alternative, to non-cooperative and social planners' solution. Our empirical results indicate that the socially optimal sediment removal technique is a mechanical dredging with unconstrained amount with providing a sustainable life of the reservoir. From the empirical results, we find that social welfare can be as high as $151.01 billion, and is sensitive to interest rates and agricultural soil loss.

  • PDF

Earthquake performance evaluation of three-dimensional roller compacted concrete dams

  • Kartal, Murat Emre;Karabulut, Muhammet
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.167-178
    • /
    • 2018
  • A roller compacted concrete (RCC) dam should be analyzed under seismic ground motions for different conditions such as empty reservoir and full reservoir conditions. This study presents three-dimensional earthquake response and performance of a RCC dam considering materially non-linearity. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The three-dimensional finite element model of Cine RCC dam is obtained using ANSYS software. The Drucker-Prager material model is considered in the materially nonlinear time history analyses for concrete and foundation rock. Furthermore, hydrodynamic effect was investigated in linear and non-linear dynamic analyses. Researchers observe that how the tensile and compressive stresses change by hydrodynamic pressure effect. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. In this study, dam body and foundation are modeled with welded contact. The displacements and principle stress components obtained from the linear and non-linear analyses with and without reservoir water are compared each other. Principle stresses during earthquake were obtained at the most critical point in the upstream face of dam body. Besides, the change of displacements and stresses by crest length were investigated. Moreover demand-capacity ratio criteria were also studied under linear dynamic and nonlinear analysis. Earthquake performance analyses were carried out for different cases and evaluated. According to linear and nonlinear analysis, hydrodynamic water effect is obvious in full reservoir situation. On the other hand, higher tensile stresses were observed in linear analyses and then non-linear analyses were performed and compared with each other.

A Mathematical Model for Coordinated Multiple Reservoir Operation (댐군의 연계운영을 위한 수학적 모형)

  • Kim, Seung-Gwon
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.779-793
    • /
    • 1998
  • In this study, for the purpose of water supply planning, we propose a sophisticated multi-period mixed integer programming model that can coordinate the behavior of multi-reservoir operation, minimizing unnecessary spill. It can simulate the system with operating rules which are self- generated by the optimization engine in the algorithm. It is an optimization model in structure, but it indeed simulates the coordinating behavior of multi-reservoir operation. It minimizes the water shortfalls in demand requirements, maintaining flood reserve volume, minimizing unnecessary spill, maximizing hydropower generation release, keeping water storage levels high for efficient hydroelectric turbine operation. This optimization model is a large scale mixed integer programming problem that consists of 3.920 integer variables and 68.658 by 132.384 node-arc incidence matrix for 28 years of data. In order to handle the enormous amount of data generated by a big mathematical model, the utilization of DBMS (data base management system)seems to be inevitable. It has been tested with the Han River multi-reservoir system in Korea, which consists of 2 large multipurpose dams and 3 hydroelectric dams. We demonstrated successfully that there is a good chance of saving substantial amount of water should it be put to use in real time with a good inflow forecasting system.

  • PDF

Modeling the Effect of Intake Depth on the Thermal Stratification and Outflow Water Temperature of Hapcheon Reservoir (취수 수심이 합천호의 수온성층과 방류 수온에 미치는 영향 모델링)

  • Sun-A Chong;Hye-Ji Kim;Hye-Suk Yi
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.473-487
    • /
    • 2023
  • Korea's multi-purpose dams, which were constructed in the 1970s and 1980s, have a single outlet located near the bottom for hydropower generation. Problems such as freezing damage to crops due to cold water discharge and an increase the foggy days have been raised downstream of some dams. In this study, we analyzed the effect of water intake depth on the reservoir's water temperature stratification structure and outflow temperature targeting Hapcheon Reservoir, where hypolimnetic withdrawal is drawn via a fixed depth outlet. Using AEM3D, a three-dimensional hydrodynamic water quality model, the vertical water temperature distribution of Hapcheon Reservoir was reproduced and the seasonal water temperature stratification structure was analyzed. Simulation periods were wet and dry year to compare and analyze changes in water temperature stratification according to hydrological conditions. In addition, by applying the intake depth change scenario, the effect of water intake depth on the thermal structure was analyzed. As a result of the simulation, it was analyzed that if the hypolimnetic withdrawal is changed to epilimnetic withdrawal, the formation location of the thermocline will decrease by 6.5 m in the wet year and 6.8 m in the dry year, resulting in a shallower water depth. Additionally, the water stability indices, Schmidt Stability Index (SSI) and Buoyancy frequency (N2), were found to increase, resulting in an increase in thermal stratification strength. Changing higher withdrawal elevations, the annual average discharge water temperature increases by 3.5℃ in the wet year and by 5.0℃ in the dry year, which reduces the influence of the downstream river. However, the volume of the low-water temperature layer and the strength of the water temperature stratification within the lake increase, so the water intake depth is a major factor in dam operation for future water quality management.

Development of a System Dynamics Computer Model for Efficient Operations of an Industrial Water Supply System (공업용수 공급시스템의 효율적인 운영을 위한 시스템다이내믹스 모형의 개발)

  • Kim, Bong-Jae;Park, Su-Wan;Kim, Tae-Yeong;Jeon, Dae-Hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.383-397
    • /
    • 2012
  • In this study, a System Dynamics (SD) simulation model for the efficient operations of an industrial water supply system was developed by investigating the feedback loop mechanisms involved in the operations of the system. The system was modeled so that as demand is determined the water supply quantity of intake pumping stations and dams are allocated. The main feedback loop showed that many variables such as the combinations of pump operation, unit electric power(kWh/$m^3$), unit electric power costs(won/$m^3$), water level of water way tunnel, suction pressure and discharge of pumping station, and tank and service reservoir water level had causal effects and produced results depending on their causal relationship. The configurations of the model included an intake pumping station model, water way tunnel model, pumping station model (including the tank and service reservoir water level control model), and unit electric power model. The model was verified using the data from the case study industrial water supply system that consisted of a water treatment plant, two pumping stations and four dams with an annual energy costs of 5 billion won. It was shown that the electric power costs could have been saved 7~26% during the past six years if the operations had been based on the findings of this study.

Flood Routing Analysis Considering the Effects of Dams in Han River (한강수계에서의 댐의 영향을 고려한 홍수추적)

  • Han, Kun-Yeun;Choi, Kyu-Hyun;Kim, Won;Kim, Dong-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.9 s.158
    • /
    • pp.747-760
    • /
    • 2005
  • This study has performed flood routing computations considering the upstream and intermediate dams in Han River using DAMBRK. Hypothetical reservoirs with variable dimensions are used to compare the validity of the reservoir routing methods, that are storage routing and dynamic routing. The flood events in September, 1990 and August, 1995 are used to verify the applicability of the model. The model performs the flood analysis more accurately considering multiple dam effects in Han River. The methodologies presented in this study will give a good contribution for basin-wide flood forecasting in Han River basin.