• Title/Summary/Keyword: Research trajectory

Search Result 803, Processing Time 0.024 seconds

Force tracking position-based impedance control of robot manipulator with unknown environment stiffness

  • Jung, Seul;Hsia, T.C.;Ahn, D.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.8-11
    • /
    • 1996
  • In impedance control for contact force tracking it is well known that the reference trajectory of the robot is calculated from known environment stiffness. The accuracy of estimating the environment stiffness determines the performance of the resulting force tracking. Here we present a simple technique, called the trajectory modification technique(TMT), of determining the reference trajectory under the condition that the environment stiffness is unknown. Computer simulation studies have shown that force tracking using the proposed technique is excellent for unknown environment with time varying stiffness.

  • PDF

Re-Entry Trajectory Tracking Via an Inverse Dynamics Method

  • Lee, Dae-Woo;Cho, Kyeum-Rae;Hui Yan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1519-1528
    • /
    • 2004
  • Atmospheric Re-Entry guidance is divided as longitudinal and lateral. This paper proposes a longitudinal reference trajectory and control law using the inverse dynamics method with pseudospectral Legendre method. Application of this method into Re-Entry problem forces a power of calculation time-reduction due to unnecessary of integration or any iteration as well as sufficient accuracy convergence. The used guidance scheme is time-to-go.

Rotorcraft Waypoint Guidance Design Using SDRE Controller

  • Yang, Chang-Deok;Kim, Chang-Joo;Yang, Soo-Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.12-22
    • /
    • 2009
  • This paper deals with the State-Dependent Riccati Equation (SDRE) Technique for the design of rotorcraft waypoint guidance. To generate the flight trajectory through multiple waypoints, we use the trigonometric spline. The controller design and its validation is based upon a level 2 simulation rotorcraft model and the designed SDRE controller is applied to the trajectory tracking problems. To verify the designed guidance law, the simulation environment of high fidelity rotorcraft model is developed using three independent PCs. This paper focuses on the validation of rotorcraft waypoint guidance law which is designed by using SDRE Controller.

A Ship Control System in the Berthing Phase

  • Bui, Van Phuoc;Kim, Young-Bok;Choi, Kwang-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.349-354
    • /
    • 2011
  • This paper addresses the trajectory tracking problem for ship berthing using sliding mode technique. With significant potential advantages: insensitivity to plant nonlinearities, parameter variations, remarkable stability and performance robustness with environmental disturbances, the multivariable sliding modes controller is proposed for solving trajectory tracking of ship in harbor area. In this study, the ship position and heading angle are simultaneously tracked to guarantees that the ship follows a given path (geometric task) with desired velocities (dynamic task). The stability of the proposed control law is proved based on Lyapunov theory. The proposed approach has been simulated on a computer model of a supply vessel with good results.

  • PDF

Labeling Big Spatial Data: A Case Study of New York Taxi Limousine Dataset

  • AlBatati, Fawaz;Alarabi, Louai
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.207-212
    • /
    • 2021
  • Clustering Unlabeled Spatial-datasets to convert them to Labeled Spatial-datasets is a challenging task specially for geographical information systems. In this research study we investigated the NYC Taxi Limousine Commission dataset and discover that all of the spatial-temporal trajectory are unlabeled Spatial-datasets, which is in this case it is not suitable for any data mining tasks, such as classification and regression. Therefore, it is necessary to convert unlabeled Spatial-datasets into labeled Spatial-datasets. In this research study we are going to use the Clustering Technique to do this task for all the Trajectory datasets. A key difficulty for applying machine learning classification algorithms for many applications is that they require a lot of labeled datasets. Labeling a Big-data in many cases is a costly process. In this paper, we show the effectiveness of utilizing a Clustering Technique for labeling spatial data that leads to a high-accuracy classifier.

Construction and verification of nonparameterized ship motion model based on deep neural network

  • Wang Zongkai;Im Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.170-171
    • /
    • 2022
  • A ship's maneuvering motion model is important in a computer simulation, especially under the trend of intelligent navigation. This model is usually constructed by the hydrodynamic parameters of the ship which are generated by the principles of hydrodynamics. Ship's motion model is a nonlinear function. By using this function, ships' motion elements can be calculated, then the ship's trajectory can be predicted. Deeping neural networks can construct any linear or non-linear equation theoretically if there have enough and sufficient training data. This study constructs some kinds of deep Networks and trains this network by real ship motion data, and chooses the best one of the networks, uses real data to train it, then uses it to predict the ship's trajectory, getting some conclusions and experiences.

  • PDF

Development of a CSGPS/DR Integrated System for High-precision Trajectory Estimation for the Purpose of Vehicle Navigation

  • Yoo, Sang-Hoon;Lim, Jeong-Min;Oh, Jeong-Hun;Kim, Ho-Beom;Lee, Kwang-Eog;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.123-130
    • /
    • 2015
  • In this study, a carrier smoothed global positioning system / dead reckoning (CSGPS/DR) integrated system for high-precision trajectory estimation for the purpose of vehicle navigation was proposed. Existing code-based GPS has a low position accuracy, and carrier-phase differential global positioning system (CPDGPS) has a long waiting time for high-precision positioning and has a problem of high cost due to the establishment of infrastructure. To resolve this, the continuity of a trajectory was guaranteed by integrating CSGPS and DR. The results of the experiment indicated that the trajectory precision of the code-based GPS showed an error performance of more than 30cm, while that of the CSGPS/DR integrated system showed an error performance of less than 10cm. Based on this, it was found that the trajectory precision of the proposed CSGPS/DR integrated system is superior to that of the code-based GPS.

Analysis of Flight Trajectory Characteristics of the MRBM by Adjusting the Angle of a Flight Path (비행경로각 조정에 의한 중거리 탄도미사일의 비행궤적 특성 해석)

  • Kim, Jiwon;Kwon, Yong Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.173-180
    • /
    • 2015
  • North Korea has developed ballistic missiles over the past 30 years. It is believed that they have a variety of ballistic missiles more than 1,000. Because these ballistic missiles threaten South Korea directly, accurate analysis of them is essential. Flight trajectories of the ballistic missiles are generally changed by means of adjusting payload weight, Isp, flight path angle, and cut-off time. The flight path angle is widely used to control the missile range. However it is difficult to predict the missile trajectory exactly in real operational environment because the missile could be launched according to its intention and purpose. This work analyzed the 1,000 km range MRBM's trajectory characteristics from adjusting flight path angle which is depressed as well as lofted method. The analysis of missile trajectory characteristics is based on the simulation of the missile trajectory model developed by KNDU research team.

A Measurement System for 3D Hand-Drawn Gesture with a PHANToMTM Device

  • Ko, Seong-Young;Bang, Won-Chul;Kim, Sang-Youn
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.347-358
    • /
    • 2010
  • This paper presents a measurement system for 3D hand-drawn gesture motion. Many pen-type input devices with Inertial Measurement Units (IMU) have been developed to estimate 3D hand-drawn gesture using the measured acceleration and/or the angular velocity of the device. The crucial procedure in developing these devices is to measure and to analyze their motion or trajectory. In order to verify the trajectory estimated by an IMU-based input device, it is necessary to compare the estimated trajectory to the real trajectory. For measuring the real trajectory of the pen-type device, a PHANToMTM haptic device is utilized because it allows us to measure the 3D motion of the object in real-time. Even though the PHANToMTM measures the position of the hand gesture well, poor initialization may produce a large amount of error. Therefore, this paper proposes a calibration method which can minimize measurement errors.

Trajectory Based Air Traffic Analysis Software Design for Dynamic Airspace Configuration (동적 공역 형상관리를 위한 궤적기반 항공 교통량 분석 소프트웨어 설계)

  • Kim, Hyoun-Kyoung;Eun, Yeon-Ju;Oh, Eun-Mi
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.173-181
    • /
    • 2013
  • In this paper, the design result of the trajectory-based air traffic analysis software which is going to be used to assess air-traffic efficiency in case that some modification's made in dynamic airspace configuration, is described. The software has been developed to make statistical data about air-traffic in Incheon FIR based on the RPL, and to analyze the airway utilization and controller workload using the trajectory modeling data which are derived from the aircraft type, cruise speed, cruise altitude, and routes and fixes in the RPL. Since it batch-processes the long-term trajectory data with other inputs such as airspace, route information and so on, it has the advantage of quickly predicting the traffic variation when some change in airspace and route information is made.