• Title/Summary/Keyword: Research Information Systems

Search Result 12,210, Processing Time 0.047 seconds

A Study on the Critical Success Factors of Social Commerce through the Analysis of the Perception Gap between the Service Providers and the Users: Focused on Ticket Monster in Korea (서비스제공자와 사용자의 인식차이 분석을 통한 소셜커머스 핵심성공요인에 대한 연구: 한국의 티켓몬스터 중심으로)

  • Kim, Il Jung;Lee, Dae Chul;Lim, Gyoo Gun
    • Asia pacific journal of information systems
    • /
    • v.24 no.2
    • /
    • pp.211-232
    • /
    • 2014
  • Recently, there is a growing interest toward social commerce using SNS(Social Networking Service), and the size of its market is also expanding due to popularization of smart phones, tablet PCs and other smart devices. Accordingly, various studies have been attempted but it is shown that most of the previous studies have been conducted from perspectives of the users. The purpose of this study is to derive user-centered CSF(Critical Success Factor) of social commerce from the previous studies and analyze the CSF perception gap between social commerce service providers and users. The CSF perception gap between two groups shows that there is a difference between ideal images the service providers hope for and the actual image the service users have on social commerce companies. This study provides effective improvement directions for social commerce companies by presenting current business problems and its solution plans. For this, This study selected Korea's representative social commerce business Ticket Monster, which is dominant in sales and staff size together with its excellent funding power through M&A by stock exchange with the US social commerce business Living Social with Amazon.com as a shareholder in August, 2011, as a target group of social commerce service provider. we have gathered questionnaires from both service providers and the users from October 22, 2012 until October 31, 2012 to conduct an empirical analysis. We surveyed 160 service providers of Ticket Monster We also surveyed 160 social commerce users who have experienced in using Ticket Monster service. Out of 320 surveys, 20 questionaries which were unfit or undependable were discarded. Consequently the remaining 300(service provider 150, user 150)were used for this empirical study. The statistics were analyzed using SPSS 12.0. Implications of the empirical analysis result of this study are as follows: First of all, There are order differences in the importance of social commerce CSF between two groups. While service providers regard Price Economic as the most important CSF influencing purchasing intention, the users regard 'Trust' as the most important CSF influencing purchasing intention. This means that the service providers have to utilize the unique strong point of social commerce which make the customers be trusted rathe than just focusing on selling product at a discounted price. It means that service Providers need to enhance effective communication skills by using SNS and play a vital role as a trusted adviser who provides curation services and explains the value of products through information filtering. Also, they need to pay attention to preventing consumer damages from deceptive and false advertising. service providers have to create the detailed reward system in case of a consumer damages caused by above problems. It can make strong ties with customers. Second, both service providers and users tend to consider that social commerce CSF influencing purchasing intention are Price Economic, Utility, Trust, and Word of Mouth Effect. Accordingly, it can be learned that users are expecting the benefit from the aspect of prices and economy when using social commerce, and service providers should be able to suggest the individualized discount benefit through diverse methods using social network service. Looking into it from the aspect of usefulness, service providers are required to get users to be cognizant of time-saving, efficiency, and convenience when they are using social commerce. Therefore, it is necessary to increase the usefulness of social commerce through the introduction of a new management strategy, such as intensification of search engine of the Website, facilitation in payment through shopping basket, and package distribution. Trust, as mentioned before, is the most important variable in consumers' mind, so it should definitely be managed for sustainable management. If the trust in social commerce should fall due to consumers' damage case due to false and puffery advertising forgeries, it could have a negative influence on the image of the social commerce industry in general. Instead of advertising with famous celebrities and using a bombastic amount of money on marketing expenses, the social commerce industry should be able to use the word of mouth effect between users by making use of the social network service, the major marketing method of initial social commerce. The word of mouth effect occurring from consumers' spontaneous self-marketer's duty performance can bring not only reduction effect in advertising cost to a service provider but it can also prepare the basis of discounted price suggestion to consumers; in this context, the word of mouth effect should be managed as the CSF of social commerce. Third, Trade safety was not derived as one of the CSF. Recently, with e-commerce like social commerce and Internet shopping increasing in a variety of methods, the importance of trade safety on the Internet also increases, but in this study result, trade safety wasn't evaluated as CSF of social commerce by both groups. This study judges that it's because both service provider groups and user group are perceiving that there is a reliable PG(Payment Gateway) which acts for e-payment of Internet transaction. Accordingly, it is understood that both two groups feel that social commerce can have a corporate identity by website and differentiation in products and services in sales, but don't feel a big difference by business in case of e-payment system. In other words, trade safety should be perceived as natural, basic universal service. Fourth, it's necessary that service providers should intensify the communication with users by making use of social network service which is the major marketing method of social commerce and should be able to use the word of mouth effect between users. The word of mouth effect occurring from consumers' spontaneous self- marketer's duty performance can bring not only reduction effect in advertising cost to a service provider but it can also prepare the basis of discounted price suggestion to consumers. in this context, it is judged that the word of mouth effect should be managed as CSF of social commerce. In this paper, the characteristics of social commerce are limited as five independent variables, however, if an additional study is proceeded with more various independent variables, more in-depth study results will be derived. In addition, this research targets social commerce service providers and the users, however, in the consideration of the fact that social commerce is a two-sided market, drawing CSF through an analysis of perception gap between social commerce service providers and its advertisement clients would be worth to be dealt with in a follow-up study.

Development of Predictive Models for Rights Issues Using Financial Analysis Indices and Decision Tree Technique (경영분석지표와 의사결정나무기법을 이용한 유상증자 예측모형 개발)

  • Kim, Myeong-Kyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.59-77
    • /
    • 2012
  • This study focuses on predicting which firms will increase capital by issuing new stocks in the near future. Many stakeholders, including banks, credit rating agencies and investors, performs a variety of analyses for firms' growth, profitability, stability, activity, productivity, etc., and regularly report the firms' financial analysis indices. In the paper, we develop predictive models for rights issues using these financial analysis indices and data mining techniques. This study approaches to building the predictive models from the perspective of two different analyses. The first is the analysis period. We divide the analysis period into before and after the IMF financial crisis, and examine whether there is the difference between the two periods. The second is the prediction time. In order to predict when firms increase capital by issuing new stocks, the prediction time is categorized as one year, two years and three years later. Therefore Total six prediction models are developed and analyzed. In this paper, we employ the decision tree technique to build the prediction models for rights issues. The decision tree is the most widely used prediction method which builds decision trees to label or categorize cases into a set of known classes. In contrast to neural networks, logistic regression and SVM, decision tree techniques are well suited for high-dimensional applications and have strong explanation capabilities. There are well-known decision tree induction algorithms such as CHAID, CART, QUEST, C5.0, etc. Among them, we use C5.0 algorithm which is the most recently developed algorithm and yields performance better than other algorithms. We obtained data for the rights issue and financial analysis from TS2000 of Korea Listed Companies Association. A record of financial analysis data is consisted of 89 variables which include 9 growth indices, 30 profitability indices, 23 stability indices, 6 activity indices and 8 productivity indices. For the model building and test, we used 10,925 financial analysis data of total 658 listed firms. PASW Modeler 13 was used to build C5.0 decision trees for the six prediction models. Total 84 variables among financial analysis data are selected as the input variables of each model, and the rights issue status (issued or not issued) is defined as the output variable. To develop prediction models using C5.0 node (Node Options: Output type = Rule set, Use boosting = false, Cross-validate = false, Mode = Simple, Favor = Generality), we used 60% of data for model building and 40% of data for model test. The results of experimental analysis show that the prediction accuracies of data after the IMF financial crisis (59.04% to 60.43%) are about 10 percent higher than ones before IMF financial crisis (68.78% to 71.41%). These results indicate that since the IMF financial crisis, the reliability of financial analysis indices has increased and the firm intention of rights issue has been more obvious. The experiment results also show that the stability-related indices have a major impact on conducting rights issue in the case of short-term prediction. On the other hand, the long-term prediction of conducting rights issue is affected by financial analysis indices on profitability, stability, activity and productivity. All the prediction models include the industry code as one of significant variables. This means that companies in different types of industries show their different types of patterns for rights issue. We conclude that it is desirable for stakeholders to take into account stability-related indices and more various financial analysis indices for short-term prediction and long-term prediction, respectively. The current study has several limitations. First, we need to compare the differences in accuracy by using different data mining techniques such as neural networks, logistic regression and SVM. Second, we are required to develop and to evaluate new prediction models including variables which research in the theory of capital structure has mentioned about the relevance to rights issue.

The Effects of the Computer Aided Innovation Capabilities on the R&D Capabilities: Focusing on the SMEs of Korea (Computer Aided Innovation 역량이 연구개발역량에 미치는 효과: 국내 중소기업을 대상으로)

  • Shim, Jae Eok;Byeon, Moo Jang;Moon, Hyo Gon;Oh, Jay In
    • Asia pacific journal of information systems
    • /
    • v.23 no.3
    • /
    • pp.25-53
    • /
    • 2013
  • This study analyzes the effect of Computer Aided Innovation (CAI) to improve R&D Capabilities empirically. Survey was distributed by e-mail and Google Docs, targeting CTO of 235 SMEs. 142 surveys were returned back (rate of return 60.4%) from companies. Survey results from 119 companies (83.8%) which are effective samples except no-response, insincere response, estimated value, etc. were used for statistics analysis. Companies with less than 50billion KRW sales of entire researched companies occupy 76.5% in terms of sample traits. Companies with less than 300 employees occupy 83.2%. In terms of the type of company business Partners (called 'partners with big companies' hereunder) who work with big companies for business occupy 68.1%. SMEs based on their own business (called 'independent small companies') appear to occupy 31.9%. The present status of holding IT system according to traits of company business was classified into partners with big companies versus independent SMEs. The present status of ERP is 18.5% to 34.5%. QMS is 11.8% to 9.2%. And PLM (Product Life-cycle Management) is 6.7% to 2.5%. The holding of 3D CAD is 47.1% to 21%. IT system-holding and its application of independent SMEs seemed very vulnerable, compared with partner companies of big companies. This study is comprised of IT infra and IT Utilization as CAI capacity factors which are independent variables. factors of R&D capabilities which are independent variables are organization capability, process capability, HR capability, technology-accumulating capability, and internal/external collaboration capability. The highest average value of variables was 4.24 in organization capability 2. The lowest average value was 3.01 in IT infra which makes users access to data and information in other areas and use them with ease when required during new product development. It seems that the inferior environment of IT infra of general SMEs is reflected in CAI itself. In order to review the validity used to measure variables, Factors have been analyzed. 7 factors which have over 1.0 pure value of their dependent and independent variables were extracted. These factors appear to explain 71.167% in total of total variances. From the result of factor analysis about measurable variables in this study, reliability of each item was checked by Cronbach's Alpha coefficient. All measurable factors at least over 0.611 seemed to acquire reliability. Next, correlation has been done to explain certain phenomenon by correlation analysis between variables. As R&D capabilities factors which are arranged as dependent variables, organization capability, process capability, HR capability, technology-accumulating capability, and internal/external collaboration capability turned out that they acquire significant correlation at 99% reliability level in all variables of IT infra and IT Utilization which are independent variables. In addition, correlation coefficient between each factor is less than 0.8, which proves that the validity of this study judgement has been acquired. The pair with the highest coefficient had 0.628 for IT utilization and technology-accumulating capability. Regression model which can estimate independent variables was used in this study under the hypothesis that there is linear relation between independent variables and dependent variables so as to identify CAI capability's impact factors on R&D. The total explanations of IT infra among CAI capability for independent variables such as organization capability, process capability, human resources capability, technology-accumulating capability, and collaboration capability are 10.3%, 7%, 11.9%, 30.9%, and 10.5% respectively. IT Utilization exposes comprehensively low explanatory capability with 12.4%, 5.9%, 11.1%, 38.9%, and 13.4% for organization capability, process capability, human resources capability, technology-accumulating capability, and collaboration capability respectively. However, both factors of independent variables expose very high explanatory capability relatively for technology-accumulating capability among independent variable. Regression formula which is comprised of independent variables and dependent variables are all significant (P<0.005). The suitability of regression model seems high. When the results of test for dependent variables and independent variables are estimated, the hypothesis of 10 different factors appeared all significant in regression analysis model coefficient (P<0.01) which is estimated to affect in the hypothesis. As a result of liner regression analysis between two independent variables drawn by influence factor analysis for R&D capability and R&D capability. IT infra and IT Utilization which are CAI capability factors has positive correlation to organization capability, process capability, human resources capability, technology-accumulating capability, and collaboration capability with inside and outside which are dependent variables, R&D capability factors. It was identified as a significant factor which affects R&D capability. However, considering adjustable variables, a big gap is found, compared to entire company. First of all, in case of partner companies with big companies, in IT infra as CAI capability, organization capability, process capability, human resources capability, and technology capability out of R&D capacities seems to have positive correlation. However, collaboration capability appeared insignificance. IT utilization which is a CAI capability factor seemed to have positive relation to organization capability, process capability, human resources capability, and internal/external collaboration capability just as those of entire companies. Next, by analyzing independent types of SMEs as an adjustable variable, very different results were found from those of entire companies or partner companies with big companies. First of all, all factors in IT infra except technology-accumulating capability were rejected. IT utilization was rejected except technology-accumulating capability and collaboration capability. Comprehending the above adjustable variables, the following results were drawn in this study. First, in case of big companies or partner companies with big companies, IT infra and IT utilization affect improving R&D Capabilities positively. It was because most of big companies encourage innovation by using IT utilization and IT infra building over certain level to their partner companies. Second, in all companies, IT infra and IT utilization as CAI capability affect improving technology-accumulating capability positively at least as R&D capability factor. The most of factor explanation is low at around 10%. However, technology-accumulating capability is rather high around 25.6% to 38.4%. It was found that CAI capability contributes to technology-accumulating capability highly. Companies shouldn't consider IT infra and IT utilization as a simple product developing tool in R&D section. However, they have to consider to use them as a management innovating strategy tool which proceeds entire-company management innovation centered in new product development. Not only the improvement of technology-accumulating capability in department of R&D. Centered in new product development, it has to be used as original management innovative strategy which proceeds entire company management innovation. It suggests that it can be a method to improve technology-accumulating capability in R&D section and Dynamic capability to acquire sustainable competitive advantage.

A Study on the Application of Outlier Analysis for Fraud Detection: Focused on Transactions of Auction Exception Agricultural Products (부정 탐지를 위한 이상치 분석 활용방안 연구 : 농수산 상장예외품목 거래를 대상으로)

  • Kim, Dongsung;Kim, Kitae;Kim, Jongwoo;Park, Steve
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.93-108
    • /
    • 2014
  • To support business decision making, interests and efforts to analyze and use transaction data in different perspectives are increasing. Such efforts are not only limited to customer management or marketing, but also used for monitoring and detecting fraud transactions. Fraud transactions are evolving into various patterns by taking advantage of information technology. To reflect the evolution of fraud transactions, there are many efforts on fraud detection methods and advanced application systems in order to improve the accuracy and ease of fraud detection. As a case of fraud detection, this study aims to provide effective fraud detection methods for auction exception agricultural products in the largest Korean agricultural wholesale market. Auction exception products policy exists to complement auction-based trades in agricultural wholesale market. That is, most trades on agricultural products are performed by auction; however, specific products are assigned as auction exception products when total volumes of products are relatively small, the number of wholesalers is small, or there are difficulties for wholesalers to purchase the products. However, auction exception products policy makes several problems on fairness and transparency of transaction, which requires help of fraud detection. In this study, to generate fraud detection rules, real huge agricultural products trade transaction data from 2008 to 2010 in the market are analyzed, which increase more than 1 million transactions and 1 billion US dollar in transaction volume. Agricultural transaction data has unique characteristics such as frequent changes in supply volumes and turbulent time-dependent changes in price. Since this was the first trial to identify fraud transactions in this domain, there was no training data set for supervised learning. So, fraud detection rules are generated using outlier detection approach. We assume that outlier transactions have more possibility of fraud transactions than normal transactions. The outlier transactions are identified to compare daily average unit price, weekly average unit price, and quarterly average unit price of product items. Also quarterly averages unit price of product items of the specific wholesalers are used to identify outlier transactions. The reliability of generated fraud detection rules are confirmed by domain experts. To determine whether a transaction is fraudulent or not, normal distribution and normalized Z-value concept are applied. That is, a unit price of a transaction is transformed to Z-value to calculate the occurrence probability when we approximate the distribution of unit prices to normal distribution. The modified Z-value of the unit price in the transaction is used rather than using the original Z-value of it. The reason is that in the case of auction exception agricultural products, Z-values are influenced by outlier fraud transactions themselves because the number of wholesalers is small. The modified Z-values are called Self-Eliminated Z-scores because they are calculated excluding the unit price of the specific transaction which is subject to check whether it is fraud transaction or not. To show the usefulness of the proposed approach, a prototype of fraud transaction detection system is developed using Delphi. The system consists of five main menus and related submenus. First functionalities of the system is to import transaction databases. Next important functions are to set up fraud detection parameters. By changing fraud detection parameters, system users can control the number of potential fraud transactions. Execution functions provide fraud detection results which are found based on fraud detection parameters. The potential fraud transactions can be viewed on screen or exported as files. The study is an initial trial to identify fraud transactions in Auction Exception Agricultural Products. There are still many remained research topics of the issue. First, the scope of analysis data was limited due to the availability of data. It is necessary to include more data on transactions, wholesalers, and producers to detect fraud transactions more accurately. Next, we need to extend the scope of fraud transaction detection to fishery products. Also there are many possibilities to apply different data mining techniques for fraud detection. For example, time series approach is a potential technique to apply the problem. Even though outlier transactions are detected based on unit prices of transactions, however it is possible to derive fraud detection rules based on transaction volumes.

School Experiences and the Next Gate Path : An analysis of Univ. Student activity log (대학생의 학창경험이 사회 진출에 미치는 영향: 대학생활 활동 로그분석을 중심으로)

  • YI, EUNJU;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.149-171
    • /
    • 2020
  • The period at university is to make decision about getting an actual job. As our society develops rapidly and highly, jobs are diversified, subdivided, and specialized, and students' job preparation period is also getting longer and longer. This study analyzed the log data of college students to see how the various activities that college students experience inside and outside of school might have influences on employment. For this experiment, students' various activities were systematically classified, recorded as an activity data and were divided into six core competencies (Job reinforcement competency, Leadership & teamwork competency, Globalization competency, Organizational commitment competency, Job exploration competency, and Autonomous implementation competency). The effect of the six competency levels on the employment status (employed group, unemployed group) was analyzed. As a result of the analysis, it was confirmed that the difference in level between the employed group and the unemployed group was significant for all of the six competencies, so it was possible to infer that the activities at the school are significant for employment. Next, in order to analyze the impact of the six competencies on the qualitative performance of employment, we had ANOVA analysis after dividing the each competency level into 2 groups (low and high group), and creating 6 groups by the range of first annual salary. Students with high levels of globalization capability, job search capability, and autonomous implementation capability were also found to belong to a higher annual salary group. The theoretical contributions of this study are as follows. First, it connects the competencies that can be extracted from the school experience with the competencies in the Human Resource Management field and adds job search competencies and autonomous implementation competencies which are required for university students to have their own successful career & life. Second, we have conducted this analysis with the competency data measured form actual activity and result data collected from the interview and research. Third, it analyzed not only quantitative performance (employment rate) but also qualitative performance (annual salary level). The practical use of this study is as follows. First, it can be a guide when establishing career development plans for college students. It is necessary to prepare for a job that can express one's strengths based on an analysis of the world of work and job, rather than having a no-strategy, unbalanced, or accumulating excessive specifications competition. Second, the person in charge of experience design for college students, at an organizations such as schools, businesses, local governments, and governments, can refer to the six competencies suggested in this study to for the user-useful experiences design that may motivate more participation. By doing so, one event may bring mutual benefits for both event designers and students. Third, in the era of digital transformation, the government's policy manager who envisions the balanced development of the country can make a policy in the direction of achieving the curiosity and energy of college students together with the balanced development of the country. A lot of manpower is required to start up novel platform services that have not existed before or to digitize existing analog products, services and corporate culture. The activities of current digital-generation-college-students are not only catalysts in all industries, but also for very benefit and necessary for college students by themselves for their own successful career development.

Changes of water Quality During the Seed Production Period of Dark-banded Rockfish Sebastes inermis in Large Scale Tanks (대형 수조에서 볼락 종묘 생산에 따른 수질 환경의 변화)

  • Oh, Sung-Yong;Noh, Choong-Hwan
    • Journal of Aquaculture
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2006
  • An experiment was carried out to investigate changing of water quality during the seed production of dark-banded rockfish Sebastes inermis in large scale tanks. Ten broodstock of dark-banded rockfish were held in three circular tanks (diameter 6.5 m; depth 2 m; water volume 50 ton) each (stocking density $0.061kg/m^3$). During the experiment the temperature ranged from 14.2 to $16.1^{\circ}C$. The fingerlings were 134 with rotifers only during 1 to 9 days after parturition, rotifers with Artemia nauplii during 10 to 20 days after parturition, Artemia nauplii only during 21 to 35 days after parturition, Artemia nauplii with commercial diet during 36 to 80 days after parturition and commercial diet only during 81 to 85 days after parturition. Water quality (dissolved oxygen, pH, $NH_4^+-N,\;NO_2^--N,\;NO_3^--N\;and\;PO_4^{3-}-P$) in rearing tanks measured every 5 days in long term monitoring investigation or every 2 hours in diurnal monitoring investigation. In 85 days after parturition, the body weight of fish grew up to 0.88 f and specific growth rate was 8.0%/day in body weight. In long term monitoring investigation, with the increase of the amount of supplied commercial diet, the concentration of dissolved oxygen (DO) and pH decreased, but the concentration of $NH_4^+-N\;(4.5\;to\;76.3{\mu}M),\;NO_2^--N\;(0.02\;to\;0.06{\mu}M),\;NO_3^--N\;(3.0\;to\;5.9{\mu}M)$, and $PO_4^{3-}-P\;(0.41\;to\;0.59{\mu}M)$ increased. In the diurnal monitoring investigation, the concentration of $NH_4^+-N$ showed great fluctuation and ranged from 3.0 to $9.1{\mu}M$ when fed rotifers, 16.3 to $45.8{\mu}M$ when fed Artemia nauplii and 36.5 to $120.1{\mu}M$ when fed commercial diet. After daily feeding with each of feed, the amount of dissolved inorganic nitrogen (DIN) and phosphorus (P) wastage were 7.0 g and 0.7 g when fed rotifers, 24.7 g and 0.7 g when fed Artemia nauplii and 140.9 g and 2.2 g when 134 commercial diet. The amount of DIN and phosphorous wastage during 134 commercial diet was significantly higher than that of fed rotifer and Artemia nauplii (P<0.05). Results will provide valuable information far water quality management and culture of dark-banded rockfish in commercial seed production systems.

Bactericidal Efficacy of Fumagari OPP®, Fumigant Against Staphylococcus aureus (훈증소독제, Fumagari OPP®의 Staphylococcus aureus에 대한 살균효과)

  • Cha, Chun-Nam;Park, Eun-Kee;Choi, Hyunju;Kim, Yongpal;Yoo, Chang-Yeol;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.4
    • /
    • pp.349-353
    • /
    • 2013
  • This study was performed to evaluate the bactericidal efficacy of Fumagari OPP$^{(R)}$, fumigation disinfectant, containing 20% ortho-phenylphenol against Staphylococcus aureus (S. aureus). In this research, efficacy test of fumigant against S. aureus was carried out according to French standard NF T 72-281. S. aureus working culture suspension number (N value), all of the colony numbers on the carriers exposed with the fumigant (n1, n2, and n3), the number of bacterial test suspentions by pour plate method (N1), the number of bacterial test suspentions by filter membrane method (N2) and the mean number of bacteria recovered on the control-carriers (T value) were obtained from the preliminary test. In addition, the reduction number of S. aureus exposed with the fumigant (d value) was calculated using T value, the mean number of bacteria in recovery solution (n'1) and the mean number of bacteria on carriers plated in agar (n'2). N value was $4.0{\times}10^8$ CFU/mL, and n1, n2, and n3 were higher than 0.5N1, 0.5N2 and 0.5N1, respectively. Additionally, T value was $3.4{\times}10^6$ CFU/mL. In the bactericidal effect of the fumigant, the d value was 6.43 logCFU/mL. According to the French standard for the fumigant, the d value for the effective bactericidal fumigant should be over than 5 logCFU/mL. The results indicated that Fumagari OPP$^{(R)}$ had an effective bactericidal activity against S. aureus, then the fumigant can be applied to disinfect food materials and kitchen appliances contaminated with pathogenic bacteria.

Bactericidal Efficacy of a Fumigation Disinfectant with Ortho-phenylphenol as an Active Ingredient Against Pseudomonas Aeruginosa and Enterococcus Hirae (Ortho-phenylphenol을 주성분을 하는 훈증소독제의 Pseudomonas aeruginosa와 Enterococcus hirae에 대한 살균효과)

  • Cha, Chun-Nam;Park, Eun-Kee;Kim, Yongpal;Yu, Eun-Ah;Yoo, Chang-Yeol;Hong, Il-Hwa;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.1
    • /
    • pp.60-66
    • /
    • 2014
  • This test was performed to evaluate the bactericidal efficacy of a fumigation disinfectant containing 20% ortho-phenylphenol against Pseudomonas aeruginosa (P. aeruginosa) and Enterococcus hirae (E. hirae). In preliminary tests, P. aeruginosa and E. hirae working culture suspension number (N value) were $2.8{\times}10^8$ and $4.0{\times}10^8CFU/mL$, respectively. And all the colony numbers on the carriers exposed to the fumigant (n1, n2, n3) were higher than 0.5N1 (the number of bacterial test suspentions by pour plate method), 0.5N2 (the number of bacterial test suspentions by filter membrane method) and 0.5N1, respectively. In addition, the mean number of P. aeruginosa and E. hirae recovered on the control-carriers (T value) was $2.8{\times}10^8$ and $3.4{\times}10^6CFU/mL$, respectively. In the bactericidal effect of the fumigant, the reduction number of $2.8{\times}10^8$ (d value) was 6.46 and 5.19 logCFU/mL, respectively. According to the French standard for the fumigant, the d value for the effective bactericidal fumigant should be over than 5 logCFU/mL. With the results from this study, the fumigation disinfectant containing 20% ortho-phenylphenol has an effective bactericidal activity, then the fumigant can be applied to disinfect food materials and kitchen appliances contaminated with the pathogenic bacteria.

Multi-Variate Tabular Data Processing and Visualization Scheme for Machine Learning based Analysis: A Case Study using Titanic Dataset (기계 학습 기반 분석을 위한 다변량 정형 데이터 처리 및 시각화 방법: Titanic 데이터셋 적용 사례 연구)

  • Juhyoung Sung;Kiwon Kwon;Kyoungwon Park;Byoungchul Song
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.121-130
    • /
    • 2024
  • As internet and communication technology (ICT) is improved exponentially, types and amount of available data also increase. Even though data analysis including statistics is significant to utilize this large amount of data, there are inevitable limits to process various and complex data in general way. Meanwhile, there are many attempts to apply machine learning (ML) in various fields to solve the problems according to the enhancement in computational performance and increase in demands for autonomous systems. Especially, data processing for the model input and designing the model to solve the objective function are critical to achieve the model performance. Data processing methods according to the type and property have been presented through many studies and the performance of ML highly varies depending on the methods. Nevertheless, there are difficulties in deciding which data processing method for data analysis since the types and characteristics of data have become more diverse. Specifically, multi-variate data processing is essential for solving non-linear problem based on ML. In this paper, we present a multi-variate tabular data processing scheme for ML-aided data analysis by using Titanic dataset from Kaggle including various kinds of data. We present the methods like input variable filtering applying statistical analysis and normalization according to the data property. In addition, we analyze the data structure using visualization. Lastly, we design an ML model and train the model by applying the proposed multi-variate data process. After that, we analyze the passenger's survival prediction performance of the trained model. We expect that the proposed multi-variate data processing and visualization can be extended to various environments for ML based analysis.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (부도예측을 위한 KNN 앙상블 모형의 동시 최적화)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.139-157
    • /
    • 2016
  • Bankruptcy involves considerable costs, so it can have significant effects on a country's economy. Thus, bankruptcy prediction is an important issue. Over the past several decades, many researchers have addressed topics associated with bankruptcy prediction. Early research on bankruptcy prediction employed conventional statistical methods such as univariate analysis, discriminant analysis, multiple regression, and logistic regression. Later on, many studies began utilizing artificial intelligence techniques such as inductive learning, neural networks, and case-based reasoning. Currently, ensemble models are being utilized to enhance the accuracy of bankruptcy prediction. Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving the generalization ability of the classifier. Base classifiers in the ensemble must be as accurate and diverse as possible in order to enhance the generalization ability of an ensemble model. Commonly used methods for constructing ensemble classifiers include bagging, boosting, and random subspace. The random subspace method selects a random feature subset for each classifier from the original feature space to diversify the base classifiers of an ensemble. Each ensemble member is trained by a randomly chosen feature subspace from the original feature set, and predictions from each ensemble member are combined by an aggregation method. The k-nearest neighbors (KNN) classifier is robust with respect to variations in the dataset but is very sensitive to changes in the feature space. For this reason, KNN is a good classifier for the random subspace method. The KNN random subspace ensemble model has been shown to be very effective for improving an individual KNN model. The k parameter of KNN base classifiers and selected feature subsets for base classifiers play an important role in determining the performance of the KNN ensemble model. However, few studies have focused on optimizing the k parameter and feature subsets of base classifiers in the ensemble. This study proposed a new ensemble method that improves upon the performance KNN ensemble model by optimizing both k parameters and feature subsets of base classifiers. A genetic algorithm was used to optimize the KNN ensemble model and improve the prediction accuracy of the ensemble model. The proposed model was applied to a bankruptcy prediction problem by using a real dataset from Korean companies. The research data included 1800 externally non-audited firms that filed for bankruptcy (900 cases) or non-bankruptcy (900 cases). Initially, the dataset consisted of 134 financial ratios. Prior to the experiments, 75 financial ratios were selected based on an independent sample t-test of each financial ratio as an input variable and bankruptcy or non-bankruptcy as an output variable. Of these, 24 financial ratios were selected by using a logistic regression backward feature selection method. The complete dataset was separated into two parts: training and validation. The training dataset was further divided into two portions: one for the training model and the other to avoid overfitting. The prediction accuracy against this dataset was used to determine the fitness value in order to avoid overfitting. The validation dataset was used to evaluate the effectiveness of the final model. A 10-fold cross-validation was implemented to compare the performances of the proposed model and other models. To evaluate the effectiveness of the proposed model, the classification accuracy of the proposed model was compared with that of other models. The Q-statistic values and average classification accuracies of base classifiers were investigated. The experimental results showed that the proposed model outperformed other models, such as the single model and random subspace ensemble model.