• Title/Summary/Keyword: Research Information Systems

Search Result 12,210, Processing Time 0.046 seconds

Dynamic Virtual Ontology using Tags with Semantic Relationship on Social-web to Support Effective Search (효율적 자원 탐색을 위한 소셜 웹 태그들을 이용한 동적 가상 온톨로지 생성 연구)

  • Lee, Hyun Jung;Sohn, Mye
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.19-33
    • /
    • 2013
  • In this research, a proposed Dynamic Virtual Ontology using Tags (DyVOT) supports dynamic search of resources depending on user's requirements using tags from social web driven resources. It is general that the tags are defined by annotations of a series of described words by social users who usually tags social information resources such as web-page, images, u-tube, videos, etc. Therefore, tags are characterized and mirrored by information resources. Therefore, it is possible for tags as meta-data to match into some resources. Consequently, we can extract semantic relationships between tags owing to the dependency of relationships between tags as representatives of resources. However, to do this, there is limitation because there are allophonic synonym and homonym among tags that are usually marked by a series of words. Thus, research related to folksonomies using tags have been applied to classification of words by semantic-based allophonic synonym. In addition, some research are focusing on clustering and/or classification of resources by semantic-based relationships among tags. In spite of, there also is limitation of these research because these are focusing on semantic-based hyper/hypo relationships or clustering among tags without consideration of conceptual associative relationships between classified or clustered groups. It makes difficulty to effective searching resources depending on user requirements. In this research, the proposed DyVOT uses tags and constructs ontologyfor effective search. We assumed that tags are extracted from user requirements, which are used to construct multi sub-ontology as combinations of tags that are composed of a part of the tags or all. In addition, the proposed DyVOT constructs ontology which is based on hierarchical and associative relationships among tags for effective search of a solution. The ontology is composed of static- and dynamic-ontology. The static-ontology defines semantic-based hierarchical hyper/hypo relationships among tags as in (http://semanticcloud.sandra-siegel.de/) with a tree structure. From the static-ontology, the DyVOT extracts multi sub-ontology using multi sub-tag which are constructed by parts of tags. Finally, sub-ontology are constructed by hierarchy paths which contain the sub-tag. To create dynamic-ontology by the proposed DyVOT, it is necessary to define associative relationships among multi sub-ontology that are extracted from hierarchical relationships of static-ontology. The associative relationship is defined by shared resources between tags which are linked by multi sub-ontology. The association is measured by the degree of shared resources that are allocated into the tags of sub-ontology. If the value of association is larger than threshold value, then associative relationship among tags is newly created. The associative relationships are used to merge and construct new hierarchy the multi sub-ontology. To construct dynamic-ontology, it is essential to defined new class which is linked by two more sub-ontology, which is generated by merged tags which are highly associative by proving using shared resources. Thereby, the class is applied to generate new hierarchy with extracted multi sub-ontology to create a dynamic-ontology. The new class is settle down on the ontology. So, the newly created class needs to be belong to the dynamic-ontology. So, the class used to new hyper/hypo hierarchy relationship between the class and tags which are linked to multi sub-ontology. At last, DyVOT is developed by newly defined associative relationships which are extracted from hierarchical relationships among tags. Resources are matched into the DyVOT which narrows down search boundary and shrinks the search paths. Finally, we can create the DyVOT using the newly defined associative relationships. While static data catalog (Dean and Ghemawat, 2004; 2008) statically searches resources depending on user requirements, the proposed DyVOT dynamically searches resources using multi sub-ontology by parallel processing. In this light, the DyVOT supports improvement of correctness and agility of search and decreasing of search effort by reduction of search path.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis (인공지능 기술에 관한 가트너 하이프사이클의 네트워크 집단구조 특성 및 확산패턴에 관한 연구)

  • Shin, Sunah;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.107-129
    • /
    • 2022
  • It is important to preempt new technology because the technology competition is getting much tougher. Stakeholders conduct exploration activities continuously for new technology preoccupancy at the right time. Gartner's Hype Cycle has significant implications for stakeholders. The Hype Cycle is a expectation graph for new technologies which is combining the technology life cycle (S-curve) with the Hype Level. Stakeholders such as R&D investor, CTO(Chef of Technology Officer) and technical personnel are very interested in Gartner's Hype Cycle for new technologies. Because high expectation for new technologies can bring opportunities to maintain investment by securing the legitimacy of R&D investment. However, contrary to the high interest of the industry, the preceding researches faced with limitations aspect of empirical method and source data(news, academic papers, search traffic, patent etc.). In this study, we focused on two research questions. The first research question was 'Is there a difference in the characteristics of the network structure at each stage of the hype cycle?'. To confirm the first research question, the structural characteristics of each stage were confirmed through the component cohesion size. The second research question is 'Is there a pattern of diffusion at each stage of the hype cycle?'. This research question was to be solved through centralization index and network density. The centralization index is a concept of variance, and a higher centralization index means that a small number of nodes are centered in the network. Concentration of a small number of nodes means a star network structure. In the network structure, the star network structure is a centralized structure and shows better diffusion performance than a decentralized network (circle structure). Because the nodes which are the center of information transfer can judge useful information and deliver it to other nodes the fastest. So we confirmed the out-degree centralization index and in-degree centralization index for each stage. For this purpose, we confirmed the structural features of the community and the expectation diffusion patterns using Social Network Serice(SNS) data in 'Gartner Hype Cycle for Artificial Intelligence, 2021'. Twitter data for 30 technologies (excluding four technologies) listed in 'Gartner Hype Cycle for Artificial Intelligence, 2021' were analyzed. Analysis was performed using R program (4.1.1 ver) and Cyram Netminer. From October 31, 2021 to November 9, 2021, 6,766 tweets were searched through the Twitter API, and converting the relationship user's tweet(Source) and user's retweets (Target). As a result, 4,124 edgelists were analyzed. As a reult of the study, we confirmed the structural features and diffusion patterns through analyze the component cohesion size and degree centralization and density. Through this study, we confirmed that the groups of each stage increased number of components as time passed and the density decreased. Also 'Innovation Trigger' which is a group interested in new technologies as a early adopter in the innovation diffusion theory had high out-degree centralization index and the others had higher in-degree centralization index than out-degree. It can be inferred that 'Innovation Trigger' group has the biggest influence, and the diffusion will gradually slow down from the subsequent groups. In this study, network analysis was conducted using social network service data unlike methods of the precedent researches. This is significant in that it provided an idea to expand the method of analysis when analyzing Gartner's hype cycle in the future. In addition, the fact that the innovation diffusion theory was applied to the Gartner's hype cycle's stage in artificial intelligence can be evaluated positively because the Gartner hype cycle has been repeatedly discussed as a theoretical weakness. Also it is expected that this study will provide a new perspective on decision-making on technology investment to stakeholdes.

Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation (영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법)

  • You, Tithrottanak;Rosli, Ahmad Nurzid;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.57-77
    • /
    • 2013
  • Social media has become one of the most popular media in web and mobile application. In 2011, social networks and blogs are still the top destination of online users, according to a study from Nielsen Company. In their studies, nearly 4 in 5active users visit social network and blog. Social Networks and Blogs sites rule Americans' Internet time, accounting to 23 percent of time spent online. Facebook is the main social network that the U.S internet users spend time more than the other social network services such as Yahoo, Google, AOL Media Network, Twitter, Linked In and so on. In recent trend, most of the companies promote their products in the Facebook by creating the "Facebook Page" that refers to specific product. The "Like" option allows user to subscribed and received updates their interested on from the page. The film makers which produce a lot of films around the world also take part to market and promote their films by exploiting the advantages of using the "Facebook Page". In addition, a great number of streaming service providers allows users to subscribe their service to watch and enjoy movies and TV program. They can instantly watch movies and TV program over the internet to PCs, Macs and TVs. Netflix alone as the world's leading subscription service have more than 30 million streaming members in the United States, Latin America, the United Kingdom and the Nordics. As the matter of facts, a million of movies and TV program with different of genres are offered to the subscriber. In contrast, users need spend a lot time to find the right movies which are related to their interest genre. Recent years there are many researchers who have been propose a method to improve prediction the rating or preference that would give the most related items such as books, music or movies to the garget user or the group of users that have the same interest in the particular items. One of the most popular methods to build recommendation system is traditional Collaborative Filtering (CF). The method compute the similarity of the target user and other users, which then are cluster in the same interest on items according which items that users have been rated. The method then predicts other items from the same group of users to recommend to a group of users. Moreover, There are many items that need to study for suggesting to users such as books, music, movies, news, videos and so on. However, in this paper we only focus on movie as item to recommend to users. In addition, there are many challenges for CF task. Firstly, the "sparsity problem"; it occurs when user information preference is not enough. The recommendation accuracies result is lower compared to the neighbor who composed with a large amount of ratings. The second problem is "cold-start problem"; it occurs whenever new users or items are added into the system, which each has norating or a few rating. For instance, no personalized predictions can be made for a new user without any ratings on the record. In this research we propose a clustering method according to the users' genre interest extracted from social network service (SNS) and user's movies rating information system to solve the "cold-start problem." Our proposed method will clusters the target user together with the other users by combining the user genre interest and the rating information. It is important to realize a huge amount of interesting and useful user's information from Facebook Graph, we can extract information from the "Facebook Page" which "Like" by them. Moreover, we use the Internet Movie Database(IMDb) as the main dataset. The IMDbis online databases that consist of a large amount of information related to movies, TV programs and including actors. This dataset not only used to provide movie information in our Movie Rating Systems, but also as resources to provide movie genre information which extracted from the "Facebook Page". Formerly, the user must login with their Facebook account to login to the Movie Rating System, at the same time our system will collect the genre interest from the "Facebook Page". We conduct many experiments with other methods to see how our method performs and we also compare to the other methods. First, we compared our proposed method in the case of the normal recommendation to see how our system improves the recommendation result. Then we experiment method in case of cold-start problem. Our experiment show that our method is outperform than the other methods. In these two cases of our experimentation, we see that our proposed method produces better result in case both cases.

The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure (공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구)

  • Kim, Keun-Hwan;Kwon, Taehoon;Jun, Seung-pyo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.1-33
    • /
    • 2019
  • The small and medium sized enterprises (hereinafter SMEs) are already at a competitive disadvantaged when compared to large companies with more abundant resources. Manufacturing SMEs not only need a lot of information needed for new product development for sustainable growth and survival, but also seek networking to overcome the limitations of resources, but they are faced with limitations due to their size limitations. In a new era in which connectivity increases the complexity and uncertainty of the business environment, SMEs are increasingly urged to find information and solve networking problems. In order to solve these problems, the government funded research institutes plays an important role and duty to solve the information asymmetry problem of SMEs. The purpose of this study is to identify the differentiating characteristics of SMEs that utilize the public information support infrastructure provided by SMEs to enhance the innovation capacity of SMEs, and how they contribute to corporate performance. We argue that we need an infrastructure for providing information support to SMEs as part of this effort to strengthen of the role of government funded institutions; in this study, we specifically identify the target of such a policy and furthermore empirically demonstrate the effects of such policy-based efforts. Our goal is to help establish the strategies for building the information supporting infrastructure. To achieve this purpose, we first classified the characteristics of SMEs that have been found to utilize the information supporting infrastructure provided by government funded institutions. This allows us to verify whether selection bias appears in the analyzed group, which helps us clarify the interpretative limits of our study results. Next, we performed mediator and moderator effect analysis for multiple variables to analyze the process through which the use of information supporting infrastructure led to an improvement in external networking capabilities and resulted in enhancing product competitiveness. This analysis helps identify the key factors we should focus on when offering indirect support to SMEs through the information supporting infrastructure, which in turn helps us more efficiently manage research related to SME supporting policies implemented by government funded institutions. The results of this study showed the following. First, SMEs that used the information supporting infrastructure were found to have a significant difference in size in comparison to domestic R&D SMEs, but on the other hand, there was no significant difference in the cluster analysis that considered various variables. Based on these findings, we confirmed that SMEs that use the information supporting infrastructure are superior in size, and had a relatively higher distribution of companies that transact to a greater degree with large companies, when compared to the SMEs composing the general group of SMEs. Also, we found that companies that already receive support from the information infrastructure have a high concentration of companies that need collaboration with government funded institution. Secondly, among the SMEs that use the information supporting infrastructure, we found that increasing external networking capabilities contributed to enhancing product competitiveness, and while this was no the effect of direct assistance, we also found that indirect contributions were made by increasing the open marketing capabilities: in other words, this was the result of an indirect-only mediator effect. Also, the number of times the company received additional support in this process through mentoring related to information utilization was found to have a mediated moderator effect on improving external networking capabilities and in turn strengthening product competitiveness. The results of this study provide several insights that will help establish policies. KISTI's information support infrastructure may lead to the conclusion that marketing is already well underway, but it intentionally supports groups that enable to achieve good performance. As a result, the government should provide clear priorities whether to support the companies in the underdevelopment or to aid better performance. Through our research, we have identified how public information infrastructure contributes to product competitiveness. Here, we can draw some policy implications. First, the public information support infrastructure should have the capability to enhance the ability to interact with or to find the expert that provides required information. Second, if the utilization of public information support (online) infrastructure is effective, it is not necessary to continuously provide informational mentoring, which is a parallel offline support. Rather, offline support such as mentoring should be used as an appropriate device for abnormal symptom monitoring. Third, it is required that SMEs should improve their ability to utilize, because the effect of enhancing networking capacity through public information support infrastructure and enhancing product competitiveness through such infrastructure appears in most types of companies rather than in specific SMEs.

Searching for the SCM Improvement Directions through the Power Attribute and Partnership (파워 유형과 파트너십 연계를 통한 공급사슬관리 개선방안 모색)

  • Jung, Dae-Hyun;Park, Kwang-O
    • Management & Information Systems Review
    • /
    • v.35 no.3
    • /
    • pp.57-79
    • /
    • 2016
  • It is required to derive various conclusions by identifying the type of power and the relationship between SCMs and presenting practical implications. Thus, we can identify the differential effects of each type of power on SCM performance. We can contribute to develop the practical implications at more sophisticated multi-dimension by comparing results of this study with various SCM theories. Through previous studies, the source of power is largely divided into binding power and non-binding power. Binding power is classified into behavior coercion, binding reward and relationship legitimacy. Non-binding power is classified into work expertise, information superiority and value compliance. Enterprises should fully understand and recognize partners within supply chains including understanding of the source of power, imbalance and results. Thus, we look into types of power and effects on trust and commitment, and identify a causal relationship leading to collaboration and SCM performance. Specific research results are as follows. First, the binding power did not give a significant effect to the trust. However, the binding power gave a positively(+) significant effect to the commitment. Second, non-binding power showed a significant effect on both trust and commitment. As a result of analysis on total effects, it was shown that non-binding power gave indirect effects to collaboration and SCM performance. Third, it was shown that both trust and commitment significantly affected collaboration. From the perspectives of social exchange theory and trading cost theory among inter-organizational relationship theory, it may lead to SCM performance of trust, commitment and collaboration. Moreover, it was found that association of each attribute of power led to the significant result. Fourth, it was shown that trust and collaboration significantly affected SCM performance. However, commitment did not directly affect SCM performance, but it indirectly significantly affected SCM performance through collaboration. Proper use of this power can firmly build partnerships between members of the supply chain and induce the improvement on supply chain performance and satisfaction of members.

  • PDF

The Effects of the Change of Operating Income Disclosure Policy under K-IFRS - Evidence from KOSDAQ Market - (K-IFRS 이후 영업이익 공시정책의 변화에 대한 연구 - 코스닥 시장을 중심으로 -)

  • Baek, Jeong-Han;Choi, Jong-Seo
    • Management & Information Systems Review
    • /
    • v.33 no.3
    • /
    • pp.167-187
    • /
    • 2014
  • While Korean GAAP had detailed regulations for the measurement and disclosure of operating income in the past, K-IFRS did not provide specific rules for operating income until 2011. Some firms that adopted K-IFRS before 2011 did not disclose or calculated operating income in an inconsistent manner although operating income is usually considered as one of the core information items to assess firm valuation. Inconsistency in firms' treatment of operating income invoked much criticism from diverse users of financial statement. The Korean Accounting Institute (KAI hereafter) revised the K-IFRS rules relevant to operating income in September 2010 in response to the voices raised by the business community, whereby the operating income number is allowed to be calculated in conformity with the previous K-GAAP. This study was motivated by the revision of K-IFRS and aims to provide a clue on the validity of such policy decision. To achieve the research objective, we test the relative value relevance of the alternative operating income numbers under K-IFRS versus K-GAAP. Our main findings are as follows. The value relevance of operating income reported before K-IFRS is proved to be higher than after K-IFRS. K-IFRS operating income adjusted to the previous K-GAAP has greater explanatory power for market values relative to one calculated under the K-IFRS regime. In an additional analysis, the sample was decomposed according to whether the operating income under K-IFRS is greater than under K-GAAP. The difference in the value relevance of K-IFRS versus K-GAAP operating income is significant only in the subsample consisting of firms which reports higher operating income under K-IFRS compared to K-GAAP. Also, the firms which would have reported negative operating income on a consecutive basis are more likely to have chosen K-IFRS, resulting in higher numbers than otherwise. It is likely that firms facing the threat of delisting due to consecutive operating loss reporting are more likely to have adopted K-IFRS disclosure rules by which they could report higher operating income numbers. To sum up, these results corroborate the limitation inherent in the K-IFRS regarding operating income disclosures. This paper suggests that the recent revision of K-IFRS implemented by KAI is likely to mitigate some of afore-mentioned limitations effectively.

  • PDF

The Gains To Bidding Firms' Stock Returns From Merger (기업합병의 성과에 영향을 주는 요인에 대한 실증적 연구)

  • Kim, Yong-Kap
    • Management & Information Systems Review
    • /
    • v.23
    • /
    • pp.41-74
    • /
    • 2007
  • In Korea, corporate merger activities were activated since 1980, and nowadays(particuarly since 1986) the changes in domestic and international economic circumstances have made corporate managers have strong interests in merger. Korea and America have different business environments and it is easily conceivable that there exists many differences in motives, methods, and effects of mergers between the two countries. According to recent studies on takeover bids in America, takeover bids have information effects, tax implications, and co-insurance effects, and the form of payment(cash versus securities), the relative size of target and bidder, the leverage effect, Tobin's q, number of bidders(single versus multiple bidder), the time period (before 1968, 1968-1980, 1981 and later), and the target firm reaction (hostile versus friendly) are important determinants of the magnitude of takeover gains and their distribution between targets and bidders at the announcement of takeover bids. This study examines the theory of takeover bids, the status quo and problems of merger in Korea, and then investigates how the announcement of merger are reflected in common stock returns of bidding firms, finally explores empirically the factors influencing abnormal returns of bidding firms' stock price. The hypotheses of this study are as follows ; Shareholders of bidding firms benefit from mergers. And common stock returns of bidding firms at the announcement of takeover bids, shows significant differences according to the condition of the ratio of target size relative to bidding firm, whether the target being a member of the conglomerate to which bidding firm belongs, whether the target being a listed company, the time period(before 1986, 1986, and later), the number of bidding firm's stock in exchange for a stock of the target, whether the merger being a horizontal and vertical merger or a conglomerate merger, and the ratios of debt to equity capital of target and bidding firm. The data analyzed in this study were drawn from public announcements of proposals to acquire a target firm by means of merger. The sample contains all bidding firms which were listed in the stock market and also engaged in successful mergers in the period 1980 through 1992 for which there are daily stock returns. A merger bid was considered successful if it resulted in a completed merger and the target firm disappeared as a separate entity. The final sample contains 113 acquiring firms. The research hypotheses examined in this study are tested by applying an event-type methodology similar to that described in Dodd and Warner. The ordinary-least-squares coefficients of the market-model regression were estimated over the period t=-135 to t=-16 relative to the date of the proposal's initial announcement, t=0. Daily abnormal common stock returns were calculated for each firm i over the interval t=-15 to t=+15. A daily average abnormal return(AR) for each day t was computed. Average cumulative abnormal returns($CART_{T_1,T_2}$) were also derived by summing the $AR_t's$ over various intervals. The expected values of $AR_t$ and $CART_{T_1,T_2}$ are zero in the absence of abnormal performance. The test statistics of $AR_t$ and $CAR_{T_1,T_2}$ are based on the average standardized abnormal return($ASAR_t$) and the average standardized cumulative abnormal return ($ASCAR_{T_1,T_2}$), respectively. Assuming that the individual abnormal returns are normal and independent across t and across securities, the statistics $Z_t$ and $Z_{T_1,T_2}$ which follow a unit-normal distribution(Dodd and Warner), are used to test the hypotheses that the average standardized abnormal returns and the average cumulative standardized abnormal returns equal zero.

  • PDF

The Impacts of Acceptance Decision Factors of Tour Social Network Service on Continuous Use Intention from the Viewpoint of User Participation : Focusing on Mediating Effect of Perceived Value and Satisfaction (이용자 참여관점에서의 관광 쇼셜 네트워크 서비스의 수용결정요인이 지속적 이용의도에 미치는 영향: 지각된 가치와 만족을 매개로 하여)

  • Lim, Chae-Kwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.119-135
    • /
    • 2014
  • This study is aimed at understanding the factors behind deciding to accept a social network service (SNS) from the viewpoint of tourists who are users of tourism SNS. The study also seeks to clarify the effects these deduced factors have on the intention of users to continuously use SNS. To this end, individual properties (such as self-efficacy, socio-cultural effects, social presence and people's innovativeness), systematic properties (like system quality and information quality)and usefulness/availability were used as factors with regard to the decision to accept tourism SNS based on previous studies and efforts were made to structurally clarify the effects of such previous factors on people's intention to continuously use SNS through perceived value and satisfaction. SNS had significant effects on satisfaction and, furthermore, significantly affected tourists' intention to continuously use it. Based on such study results, factors behind deciding to accept SNS from the viewpoint of tourists affected customers' perceived value and satisfaction and ultimately affected their intention to continuously use SNS. To achieve the purpose of the study, a survey was conducted on about 250 Busan residents who had used SNS in relation to tourist activities, such as exhibitions, conventions, accommodation, trips, aviation service and transportation. According to an empirical study, factors behind deciding to accept tourism SNS, including individual properties, systematic properties and usefulness/availability had statistically significant effects on perceived value. The usefulness/availability factor had the largest influence, in particular, followed by the systematic factor and individual factor. The value perceived in the process of using tourism SNS had significant effects on satisfaction and, furthermore, significantly affected tourists' intention to continuously use it. Based on such study results, factors behind deciding to accept SNS from the viewpoint of tourists affected customers' perceived value and satisfaction and ultimately affected their intention to continuously use SNS.

Revisiting the cause of unemployment problem in Korea's labor market: The job seeker's interests-based topic analysis (취업준비생 토픽 분석을 통한 취업난 원인의 재탐색)

  • Kim, Jung-Su;Lee, Suk-Jun
    • Management & Information Systems Review
    • /
    • v.35 no.1
    • /
    • pp.85-116
    • /
    • 2016
  • The present study aims to explore the causes of employment difficulty on the basis of job applicant's interest from P-E (person-environment) fit perspective. Our approach relied on a textual analytic method to reveal insights from their situational interests in a job search during the change of labor market. Thus, to investigate the type of major interests and psychological responses, user-generated texts in a social community were collected for analysis between January 1, 2013 through December 31, 2015 by crawling the online-community in regard to job seeking and sharing information and opinions. The results of topic analysis indicated user's primary interests were divided into four types: perception of vocation expectation, employment pre-preparation behaviors, perception of labor market, and job-seeking stress. Specially, job applicants put mainly concerns of monetary reward and a form of employment, rather than their work values or career exploration, thus youth job applicants expressed their psychological responses using contextualized language (e.g., slang, vulgarisms) for projecting their unstable state under uncertainty in response to environmental changes. Additionally, they have perceived activities in the restricted preparation (e.g., certification, English exam) as determinant factors for success in employment and suffered form job-seeking stress. On the basis of these findings, current unemployment matters are totally attributed to the absence of pursing the value of vocation and job in individuals, organizations, and society. Concretely, job seekers are preoccupied with occupational prestige in social aspect and have undecided vocational value. On the other hand, most companies have no perception of the importance of human resources and have overlooked the needs for proper work environment development in respect of stimulating individual motivation. The attempt in this study to reinterpret the effect of environment as for classifying job applicant's interests in reference to linguistic and psychological theories not only helps conduct a more comprehensive meaning for understanding social matters, but guides new directions for future research on job applicant's psychological factors (e.g., attitudes, motivation) using topic analysis.

  • PDF