• Title/Summary/Keyword: Research Information Systems

Search Result 12,210, Processing Time 0.043 seconds

Real Time Distributed Parallel Processing to Visualize Noise Map with Big Sensor Data and GIS Data for Smart Cities (스마트시티의 빅 센서 데이터와 빅 GIS 데이터를 융합하여 실시간 온라인 소음지도로 시각화하기 위한 분산병렬처리 방법론)

  • Park, Jong-Won;Sim, Ye-Chan;Jung, Hae-Sun;Lee, Yong-Woo
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • In smart cities, data from various kinds of sensors are collected and processed to provide smart services to the citizens. Noise information services with noise maps using the collected sensor data from various kinds of ubiquitous sensor networks is one of them. This paper presents a research result which generates three dimensional (3D) noise maps in real-time for smart cities. To make a noise map, we have to converge many informal data which include big image data of geographical Information and massive sensor data. Making such a 3D noise map in real-time requires the processing of the stream data from the ubiquitous sensor networks in real-time and the convergence operation in real-time. They are very challenging works. We developed our own methodology for real-time distributed and parallel processing for it and present it in this paper. Further, we developed our own real-time 3D noise map generation system, with the methodology. The system uses open source softwares for it. Here in this paper, we do introduce one of our systems which uses Apache Storm. We did performance evaluation using the developed system. Cloud computing was used for the performance evaluation experiments. It was confirmed that our system was working properly with good performance and the system can produce the 3D noise maps in real-time. The performance evaluation results are given in this paper, as well.

A Study on the Impact of Innovation Cluster Activity on Enterprise Performance - Focused on Daejeon - (혁신클러스터 활동이 기업의 경영성과에 미치는 영향연구 - 대전지역을 중심으로 -)

  • Lee, Yoon-koo;Hyun, Byung-hwan
    • Journal of Digital Convergence
    • /
    • v.16 no.10
    • /
    • pp.155-167
    • /
    • 2018
  • This study was designed to provide implications for related policies by researching the impact on business management performances focusing on the activities within the innovation clusters based on small and medium venture companies in Daejeon area. The questionnaires from 212 CEOs of small and medium venture businesses in Daejeon were analyzed and verified the research hypothesis using SPSS 21. From the empirical analysis, we confirmed the following results; activity of information exchange, information acquisition and solving activity between demand and supplier showed positive effects on business management performance, however the concern and relationship have no effects on business management performance. From this study, we suggest that the active participation in activity of innovation cluster and various supporting systems or policies have to expand for sustainable growth and development of companies within innovation cluster. We also propose that companies needs to try to more efforts on enhance the mutual satisfaction or forming a consensus for cooperation. This study also propose the implications that the companies, innovation cluster must try on efforts to improve relation among members for enhancing the lack of concerns and relationship.

Performance Improvement of Spam Filtering Using User Actions (사용자 행동을 이용한 쓰레기편지 여과의 성능 개선)

  • Kim Jae-Hoon;Kim Kang-Min
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.163-170
    • /
    • 2006
  • With rapidly developing Internet applications, an e-mail has been considered as one of the most popular methods for exchanging information. The e-mail, however, has a serious problem that users ran receive a lot of unwanted e-mails, what we called, spam mails, which cause big problems economically as well as socially. In order to block and filter out the spam mails, many researchers and companies have performed many sorts of research on spam filtering. In general, users of e-mail have different criteria on deciding if an e-mail is spam or not. Furthermore, in e-mail client systems, users do different actions according to a spam mail or not. In this paper, we propose a mail filtering system using such user actions. The proposed system consists of two steps: One is an action inference step to draw user actions from an e-mail and the other is a mail classification step to decide if the e-mail is spam or not. All the two steps use incremental learning, of which an algorithm is IB2 of TiMBL. To evaluate the proposed system, we collect 12,000 mails of 12 persons. The accuracy is $81{\sim}93%$ according to each person. The proposed system outperforms, at about 14% on the average, a system that does not use any information about user actions.

Investigating the Impact of Corporate Social Responsibility on Firm's Short- and Long-Term Performance with Online Text Analytics (온라인 텍스트 분석을 통해 추정한 기업의 사회적책임 성과가 기업의 단기적 장기적 성과에 미치는 영향 분석)

  • Lee, Heesung;Jin, Yunseon;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.13-31
    • /
    • 2016
  • Despite expectations of short- or long-term positive effects of corporate social responsibility (CSR) on firm performance, the results of existing research into this relationship are inconsistent partly due to lack of clarity about subordinate CSR concepts. In this study, keywords related to CSR concepts are extracted from atypical sources, such as newspapers, using text mining techniques to examine the relationship between CSR and firm performance. The analysis is based on data from the New York Times, a major news publication, and Google Scholar. We used text analytics to process unstructured data collected from open online documents to explore the effects of CSR on short- and long-term firm performance. The results suggest that the CSR index computed using the proposed text - online media - analytics predicts long-term performance very well compared to short-term performance in the absence of any internal firm reports or CSR institute reports. Our study demonstrates the text analytics are useful for evaluating CSR performance with respect to convenience and cost effectiveness.

An Efficient Method of Forensics Evidence Collection at the Time of Infringement Occurrence (호스트 침해 발생 시점에서의 효율적 Forensics 증거 자료 수집 방안)

  • Choi Yoon-Ho;Park Jong-Ho;Kim Sang-Kon;Kang Yu;Choe Jin-Gi;Moon Ho-Gun;Rhee Myung-Su;Seo Seung-Woo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.69-81
    • /
    • 2006
  • The Computer Forensics is a research area that finds the malicious users by collecting and analyzing the intrusion or infringement evidence of computer crimes such as hacking. Many researches about Computer Forensics have been done so far. But those researches have focussed on how to collect the forensic evidence for both analysis and poofs after receiving the intrusion or infringement reports of hosts from computer users or network administrators. In this paper, we describe how to collect the forensic evidence of good quality from observable and protective hosts at the time of infringement occurrence by malicious users. By correlating the event logs of Intrusion Detection Systems(IDSes) and hosts with the configuration information of hosts periodically, we calculate the value of infringement severity that implies the real infringement possibility of the hosts. Based on this severity value, we selectively collect the evidence for proofs at the time of infringement occurrence. As a result, we show that we can minimize the information damage of the evidence for both analysis and proofs, and reduce the amount of data which are used to analyze the degree of infringement severity.

A Study on the One-Way Distance in the Longitudinal Section Using Probabilistic Theory (확률론적 이론을 이용한 종단면에서의 단방향 이동거리에 관한 연구)

  • Kim, Seong-Ryul;Moon, Ji-Hyun;Jeon, Hae-Sung;Sue, Jong-Chal;Choo, Yeon-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.87-96
    • /
    • 2020
  • To use a hydraulic structure effectively, the velocity of a river should be known in detail. In reality, velocity measurements are not conducted sufficiently because of their high cost. The formulae to yield the flux and velocity of the river are commonly called the Manning and Chezy formulae, which are empirical equations applied to uniform flow. This study is based on Chiu (1987)'s paper using entropy theory to solve the limits of the existing velocity formula and distribution and suggests the velocity and distance formula derived from information entropy. The data of a channel having records of a spot's velocity was used to verify the derived formula's utility and showed R2 values of distance and velocity of 0.9993 and 0.8051~0.9483, respectively. The travel distance and velocity of a moving spot following the streamflow were calculated using some flow information, which solves the difficulty in frequent flood measurements when it is needed. This can be used to make a longitudinal section of a river composed of a horizontal distance and elevation. Moreover, GIS makes it possible to obtain accurate information, such as the characteristics of a river. The connection with flow information and GIS model can be used as alarming and expecting flood systems.

A Study on the Cerber-Type Ransomware Detection Model Using Opcode and API Frequency and Correlation Coefficient (Opcode와 API의 빈도수와 상관계수를 활용한 Cerber형 랜섬웨어 탐지모델에 관한 연구)

  • Lee, Gye-Hyeok;Hwang, Min-Chae;Hyun, Dong-Yeop;Ku, Young-In;Yoo, Dong-Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.363-372
    • /
    • 2022
  • Since the recent COVID-19 Pandemic, the ransomware fandom has intensified along with the expansion of remote work. Currently, anti-virus vaccine companies are trying to respond to ransomware, but traditional file signature-based static analysis can be neutralized in the face of diversification, obfuscation, variants, or the emergence of new ransomware. Various studies are being conducted for such ransomware detection, and detection studies using signature-based static analysis and behavior-based dynamic analysis can be seen as the main research type at present. In this paper, the frequency of ".text Section" Opcode and the Native API used in practice was extracted, and the association between feature information selected using K-means Clustering algorithm, Cosine Similarity, and Pearson correlation coefficient was analyzed. In addition, Through experiments to classify and detect worms among other malware types and Cerber-type ransomware, it was verified that the selected feature information was specialized in detecting specific ransomware (Cerber). As a result of combining the finally selected feature information through the above verification and applying it to machine learning and performing hyper parameter optimization, the detection rate was up to 93.3%.

Parameter Calibration of Car Following Models Using DGPS DATA (DGPS 수신장치를 활용한 차량추종 모형 파라미터 정산)

  • Kim, Eun-Yeong;Lee, Cheong-Won;Kim, Yong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.3 s.89
    • /
    • pp.17-27
    • /
    • 2006
  • Car following model is a theory that examines changes of condition and interrelationship of acceleration deceleration. headway, velocity and so on closely based on the hypothesis that the Posterior vehicle always follows the preceding vehicle. Car following mode) which is one of the research fields of microscopic traffic flow was first introduced in 1950s and was in active progress in 1960s. However, due to the limitation of data gathering the research depression was prominent for quite a while and then soon was able to tune back on track with development in global positioning system using satellite and generalization of computer use. Recently, there has been many research studies using reception materials of global Positioning system(GPS). Introducing GPS technology to traffic has made real time tracking of a vehicle position possible. Position information is sequential in terms of time and simultaneous measurement of several vehicles in continuous driving is also practicable. Above research was focused on judging whether it is feasible to overcome the following model research by adopting the GPS reception device that was restrictively proceeded due to the limitation of data gathering. For practical judgment, we measured the accuracy and confidence level of the GPS reception devices material by carrying out a practical experiment. Car following model is also being applied in simulations of traffic flow analysis, but due to the difficulty of estimating parameters the basis of the above result. it is our goal to produce an accurate calibration of car following model's parameters that is suitable in this domestic actuality.

Reviews on the Adaptation Strategy to Climate Change -Application to the Sea Level Rise- (기후변화 적응방안 연구 -해수면 상승을 중심으로-)

  • Cho Kwangwoo;Maeng Jun-Ho;Kim Hae-Dong;Oh Young Min;Kim Dong-Sun;Kim Mu Chan;Yoon Jong Hwui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.81-88
    • /
    • 2004
  • We review the adaptation strategies of the 21st climate change in an application to sea level rise. For the development of appropriate adaptation strategies on the coast vulnerable to the sea level rise, we have to consider the issues such as where to adapt, how to adapt, and when to adapt. The coastal target needed adaptation can be found by the evaluation of adaptive capacity of the coastal zone which requires the understanding of impacts and adaptive potential of the natural and socioeconomic systems in the coastal zone. Planned adaptation options to sea level rise can be classified into three generic approaches as managed retreat, accommodation, and protection In practice, the implementation of the options requires the analysis of land use, degree of vulnerability, cost and benefit, etc, and may be combination of the options rather than one approach. In terms of the response timing, the adaptation can be grouped as anticipatory and reactive ones. Generally it is more effective to consider both anticipatory and reactive adaptations at the same time for the impacts of future sea level rise. Due to the scientific uncertainty of climate change issues including sea level rise, the adaptation processes have to be designed to deal with a series of processes such as information md awareness establishment, planning and design implementation, and monitoring and evaluation in continuity and long-term period.

  • PDF

Evaluation of the Trends of Stomach Cancer Incidence in Districts of Iran from 2000-2010: Application of a Random Effects Markov Model

  • Zayeri, Farid;mansouri, Anita;Sheidaei, Ali;Rahimzadeh, Shadi;Rezaei, Nazila;Modirian, Mitra;khademioureh, Sara;Baghestani, Ahmad Reza;Farzadfar, Farshad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.661-665
    • /
    • 2016
  • Background: Stomach cancer is the fifth most common cancer and the third leading cause of death among cancers throughout the world. Therefore, stomach cancer outcomes can affect health systems at the national and international levels. Although stomach cancer mortality and incidence rates have decreased in developed countries, these indicators have a raising trend in East Asian developing countries, particularity in Iran. In this study, we aimed to determine the time trend of age-standardized rates of stomach cancer in different districts of Iran from 2000 to 2010. Materials and Methods: Cases of cancer were registered using a pathology-based system during 2000-2007 and with a population-based system since 2008 in Iran. In this study, we collected information about the incidence of stomach cancer during a 10 year period for 31 provinces and 376 districts, with a total of 49,917 cases. We employed two statistical approaches (a random effects and a random effects Markov model) for modeling the incidence of stomach cancer in different districts of Iran during the studied period. Results: The random effects model showed that the incidence rate of stomach cancer among males and females had an increasing trend and it increased by 2.38 and 0.87 persons every year, respectively. However, after adjusting for previous responses, the random effects Markov model showed an increasing rate of 1.53 and 0.75 for males and females, respectively. Conclusions: This study revealed that there are significant differences between different areas of Iran in terms of age-standardized incidence rates of stomach cancer. Our study suggests that a random effects Markov model can adjust for effects of previous responses.