• Title/Summary/Keyword: Repression

Search Result 503, Processing Time 0.026 seconds

Development Paradigm of Repression and Desire Embodied by Body and Clothing (몸·복식에서 억압과 욕망의 패러다임 개발)

  • Jeong, Ki-Sung;Kim, Min-Ja
    • Journal of the Korean Society of Costume
    • /
    • v.63 no.6
    • /
    • pp.97-112
    • /
    • 2013
  • In this study, physical, social and psychological repression embodied by the body and clothing are referred to instinctual, power and creative desires, respectively, from the point of biological, social and aesthetic views. Desire refers to a behavior to overcome men's imperfections with individual security, sense of belonging and the pursuit of an ideal, which are obtained by living as a social creature. Repression through the body is sub-categorized depending on whether it is temporary or permanent. Repression expressed through clothing is seen through revealing/concealing, contraction/expansion, and deconstruction/ reconstruction. What enables human beings to embrace changes in fashion without fierce resistance or backlash is the changes of formativeness demonstrated by repression through the body and clothing. The aesthetic values drawn from the exhibition of repression and on the body and clothing are categorized into narcissism, fetishism and aestheticism. While narcissism is an instinctive desire grounded on the originality and confidence of the self that results in refusing repression, fetishism is a desire for power that expedites repression in the pursuit of materialistic value or sexual fantasy. Aestheticism is a desire for creativity that symbolizes the body-and-clothing repression in the pursuit of aesthetic idealism. Repression evokes desire, and the pursuit of desire leads to another repression. The aesthetic values of desire for instinct, power and creativity can be substituted with each other for interpretation according to the attitudes of an initiator, a user and a spectator.

Characterization of tTA and Its Functional Domain in Tetracycline Repressor-mediated Gene Repression System

  • Kim, Hong-Jin;Kim, Ki-Ho
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.320-325
    • /
    • 1998
  • To elucidate of role(s) of tTA as a repressor in the tTA-mediated gene repression system, we introduced mutations into the acidic domain of VP16 and examined the effects of such various mutations. In the transient repression experiment, a region containing 34 amino acids of the activation domain of VP16 (412-456) which interacts with TFIIB was found to be necessary and sufficient for the tTA-mediated repression of gene expression. However, in the experiment to investigate the fact that tTA-regulated repression is related to the activation function of VP16, we found that the repression abilities of tTA derivatives did not correlate exactly with their activation abilities. Therefore, we conclude that increased mass of VP16 in tTA might be also important for efficient repression in addition to functional domain of VP16.

  • PDF

The Glucose Repression of Aerial Mycelium Formation in Streptomyces (Streptomyces의 Aerial Mycelium 형성에 대한 Glucose 억제 기작에 관한 연구)

  • 김재헌;김웅진;강현삼;하영칠;홍순우
    • Korean Journal of Microbiology
    • /
    • v.18 no.3
    • /
    • pp.115-122
    • /
    • 1980
  • We have demonstrated that both L-histidine as an amino acid factor and dextrin as a carbon source were required for the glucose repression. 1% glucose was sufficient to the glucose repression of aerial mycelium formation in Streptomyces lavendulae and Streptomyces aureofacience. the synthesized medium, KK, which is lack of all orgnic nutrients except dextrin was able to induce glucose repression, but the addition of 0.003% or more L-histidiner recovers the capacity of glucose repression. 0.02% or more histidine was reuqired for glucose repression of aerial mycelium formation in the absence of dextrin. Treatments of $5{\mu}M$ ormore ethidium bromide (EtBr0 gave rise to bald mutants at high frequency in Streptomyces aureofaciens, and it is probable that the gene(s) for the function of aerial mycelium formation is linked to plasmed DNA in this species.

  • PDF

Cellulase Production from the Catabolite Repression Resistant Mutant of Pseudomonas sp. (Psedomonas sp.의 Catabolits Repression 저항성 변이주로부터 Cellulase의 생산)

  • 정영철;노종수;성낙계;강신권
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.549-555
    • /
    • 1993
  • The production of cellulase by Pseudomonas sp. LBC505 isolated was under the strict genetic and biochemical control mechanisms such as catabolit repression and induction. These biochemical control reduced cellulase production. Thus LBC505 was mutated to increase enzyme yields. Cells growth and cellulase production were inhibited by the addition of 2-deoxy glucose (2-DG), which is presumed to function as repressor for the selection of high cellulase yielding mutant.

  • PDF

Regulation of $\beta$-galactosidase Biosynt hesis in Lactobacillus sporogenes (Lactobacillus sporogenes에서$\beta$-galactosidase 생합성 조절)

  • 이정희;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.566-570
    • /
    • 1990
  • Regulation of $\beta$ -galactosidase formation was studied with Lactobacillus sporogenes. Synthesis of the enzyme was effectively induced by isopropyl- $\beta$-D-thiogalactopyranoside (IPTG) or galactose, and to a much lower level by lactose. When 15 mM glucose was added at the different intervals to the cultures that had been in contact with IPTG, the same levels of inhibition of the enzyme synthesis were observed (approximately one-third the differential rate of a control culture without glucose). This suggests that glucose did not interfere with the entry of the inducer into the cells, but interfere with the formation of $\beta$ -galactosidase through catabolite repression. The glucose inhibitory effect was not overcome by adding CAMP or cGMP to the culture media.

  • PDF

Mesodermal repression of single-minded in Drosophila embryo is mediated by a cluster of Snail-binding sites proximal to the early promoter

  • Park, Kye-Won;Hong, Joung-Woo
    • BMB Reports
    • /
    • v.45 no.10
    • /
    • pp.577-582
    • /
    • 2012
  • single-minded (sim) is a master regulatory gene that directs differentiation in the central nervous system during Drosophila embryogenesis. Recent identification of the mesectoderm enhancer (MSE) of sim has led to the hypothesis that two Snail (Sna)-binding sites in the MSE may repress sim expression in the presumptive mesoderm. We provide evidence here that three Sna-binding sites proximal to the sim promoter, but not those of the MSE, are responsible for the mesodermal repression of sim in vivo. Using transgenic embryos injected with lacZ transgenes, we showed that sim repression in the mesoderm requires the three promoter-proximal Sna-binding sites. These results suggest that Sna represses the mesectodermal expression of sim by directly repressing the nearby promoter, and not by quenching adjacent transcriptional activators in the MSE. These data also showed how the MSE, lacking the three proximal Sna-binding sites, reproduced the endogenous pattern of sim expression in transgenic embryos.

Selection and Characterization of Catabolite Repression Resistant Mutant of Bacillus firmus var. alkalophilus Producing Cyclodextrin Glucanotransferase

  • Do, Eun-Ju;Shin, Hyun-Dong;Kim, Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.78-85
    • /
    • 1993
  • In order to elucidate the mechanism which regulates the production of cyclodextrin glucanotransferase (CGTase) and to achieve overproduction of CGTase by releasing catabolite (glucose) repression, several catabolite repression resistant mutants were selected from newly screened Bacillus firmus var. alkalophilus H609, after NTG (N-methyl-N -nitro-N-nitrosoguanidine) treatment, using 2-deoxyglucose as a nonmetabolizable analog of catabolite glucose and as a selection marker. Five catabolite repression resistant mutants were selected from about 30, 000 2-deoxyglucose resistant colonies. Relative catabolite repression indices of the selected mutants were in the range of 8~80% assuming 100% for parent strain. The amount of CGTase produced by the mutant strain CR41, which was 250 units/ml, was three times larger than that produced by its parent strain. The mutation seems to have occurred in the regulatory region of CGTase gene and not in the structural region or the glucose transporting system in cell membrane. The enzymatic properties of CGTase excreted from parent and mutant strains were also compared.

  • PDF

Growth model for Pichia stipitis growing on sugar mixtures (혼합당에서의 Pichia stipitis의 생육 모델)

  • 이유석;권윤중변유량
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.265-270
    • /
    • 1992
  • Low cost fermentation substrates frequently contain a mixture of carbon sources including hexoses, pentoses and disaccharides. Fermentation of such mixtures requires an understanding of how each of these substrates is utilized. During batch culture of Pichia stipitis CBS 5776 on sugar mixtures, glucose causes catabolite repression of xylose and cellobiose utilization. Also, glucose causes a permanent repression of xylose utilization as evidenced by reduced growth rates during the xylose phase of glucose/xylose fermentation. The growth model for multiple substrates is developed based on a cyclic AMP mediated catabolite repression mechanism and this model adequately described the growth and ethanol production from sugar mixtures.

  • PDF

Heterologous Regulation of BCG hsp65 Promoter by M.leprae 18 kDa Transcription Repression Responsive Element

  • Kim, Hyun Bae;You, Ji Chang
    • Genomics & Informatics
    • /
    • v.1 no.2
    • /
    • pp.113-118
    • /
    • 2003
  • Among a number of antigens characterized in M leprae, an etiological agent of Leprosy, the 18 kDa antigen, is unique to M leprae. We have previously determined a sequence specific element in the 18 kDa gene of M leprae, which confers transcriptional repression. In this report, we have examined if the element could be applied to genes other than the 18 kDa gene of M leprae. To identify the roles of the regulatory sequence in heterologous promoter, we have constructed pB3 vector series, which contains BCG hsp65 promoter and the M leprae 18 kDa transcription repression responsive element in tandem using LacZ gene as a reporter gene. Cloning of hsp65 promoters of M bovis BCG or M smegmatis in front of LacZ gene resulted in normal $\beta$­galactosidase activity as expected. However, when the sequence element was placed between the promoter and the LacZ gene, $\beta$-galactosidase activity was reduced 10-fold less. Also we have examined with pB3(-) vector, that harbors the transcription repression responsive element in a reversed orientation, the $\beta$-galactosidase activity was found to be similar to pB3(+) vector. Thus, these results further confirm that M leprae 18 kDa transcription repression responsive element could regulate BCG hsp65 heterologous promoter and that the element could act as an operator for the transcription of mycobacteria.

DNA Replication is not Required in Re-establishment of HMRE Silencer Function at the HSP82 Yeast Heat Shock Locus

  • Lee, See-Woo;Gross, David S.
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.30-36
    • /
    • 1996
  • We have exmained the re-establishment of HIMRE mediated silencing function on the transcriptional activity of yeast heast shock gene HSP82. To test whether the onset of SIR repression can occur in growing cells in the rpesence of a potent inhibitor of DNA replication, HMRa/HSP82 strains with SIR4- and SIR4S$^{+}$ genetic backgrounds were arrested in S phase by incubation of a culture in 200 mM hydroxyurea for 120 min. It was clear that following a 20 minute heat shock, silencing of the HMRa/HSP82 allele in cells pretreated with hydroxyurea does occur in a SIR4-dependen fashion, even though the kinetics of repression appears to be substantially delayed. We also have tested whether re- establishement of silencing at the HMR/hsp82 locus can occur in G1-arrested cells. Cell cycle arrest at G1 phase was achieved by treatment of early log a cell cultures with .alpha.-factor mating pheromone, which induces G1 arrest. The result suggests that passage through S phase (and therefore DNA replication) is nor required for re-establishing silencer-mediated repression at the HMNRa/HSP82 locus. Finally, to test whether de nono protein synthesis is required for re-establishment of silencer-mediated repression, cells were pretreated with cycloheximide (500 /.mu.g/ml) 120 min. It was apparent that inhibiting protein synthesis delays, but does not prevent, re-establishment of silencer-mediated repression. Altogether, these results indicate that re-establishment of silencer-mediated repression is not dependent on the DNA replication and has no requirement for protein synthesis.s.

  • PDF