DOI QR코드

DOI QR Code

Mesodermal repression of single-minded in Drosophila embryo is mediated by a cluster of Snail-binding sites proximal to the early promoter

  • Park, Kye-Won (Department of Food Science and Biotechnology, Sungkyunkwan University) ;
  • Hong, Joung-Woo (Graduate School of East-West Medical Science, Kyung Hee University)
  • Received : 2012.05.14
  • Accepted : 2012.06.30
  • Published : 2012.10.31

Abstract

single-minded (sim) is a master regulatory gene that directs differentiation in the central nervous system during Drosophila embryogenesis. Recent identification of the mesectoderm enhancer (MSE) of sim has led to the hypothesis that two Snail (Sna)-binding sites in the MSE may repress sim expression in the presumptive mesoderm. We provide evidence here that three Sna-binding sites proximal to the sim promoter, but not those of the MSE, are responsible for the mesodermal repression of sim in vivo. Using transgenic embryos injected with lacZ transgenes, we showed that sim repression in the mesoderm requires the three promoter-proximal Sna-binding sites. These results suggest that Sna represses the mesectodermal expression of sim by directly repressing the nearby promoter, and not by quenching adjacent transcriptional activators in the MSE. These data also showed how the MSE, lacking the three proximal Sna-binding sites, reproduced the endogenous pattern of sim expression in transgenic embryos.

Keywords

References

  1. Thomas, J. B., Crews, S. T. and Goodman, C. S. (1988) Molecular genetics of the single-minded locus: a gene involved in the development of the Drosophila nervous system. Cell 52, 133-141. https://doi.org/10.1016/0092-8674(88)90537-5
  2. Crews, S. T., Thomas, J. B. and Goodman, C. S. (1988) The Drosophila single-minded gene encodes a nuclear protein with sequence similarity to the per gene product. Cell 52, 143-151. https://doi.org/10.1016/0092-8674(88)90538-7
  3. Nambu, J. R., Franks, R. G., Hu, S. and Crews, S. T. (1990) The single-minded gene of Drosophila is required for the expression of genes important for the development of CNS midline cells. Cell 63, 63-75. https://doi.org/10.1016/0092-8674(90)90288-P
  4. Nambu, J. R., Lewis, J. O., Wharton, K. A. Jr and Crews, S. T. (1991) The Drosophila single-minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development. Cell 67, 1157-1167. https://doi.org/10.1016/0092-8674(91)90292-7
  5. Golembo, M., Raz, E. and Shilo, B. Z. (1996) The Drosophila embryonic midline is the site of Spitz processing, and induces activation of the EGF receptor in the ventral ectoderm. Development 122, 3363-3370.
  6. Skeath, J. B. (1998) The Drosophila EGF receptor controls the formation and specification of neuroblasts along the dorsal-ventral axis of the Drosophila embryo. Development 125, 3301-3312.
  7. Arendt, D. and Nubler-Jung, K. (1999) Comparison of early nerve cord development in insects and vertebrates. Development 126, 2309-2325.
  8. Sonnenfeld, M., Ward, M., Nystrom, G., Mosher, J., Stahl, S. and Crews, S. (1997) The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development 124, 4571-4582.
  9. Wharton, K. A. Jr, Franks, R. G., Kasai, Y. and Crews, S. T. (1994) Control of CNS midline transcription by asymmetric E-box-like elements: similarity to xenobiotic responsive regulation. Development 120, 3563-3569.
  10. Hong, J. W., Hendrix, D. A., Papatsenko, D. and Levine, M. S. (2008) How the Dorsal gradient works: insights from postgenome technologies. Proc. Natl. Acad. Sci. U.S.A. 105, 20072-20076. https://doi.org/10.1073/pnas.0806476105
  11. Reeves, G. T. and Stathopoulos, A. (2009) Graded dorsal and differential gene regulation in the Drosophila embryo. Cold Spring Harb. Perspect. Biol. 1, a000836. https://doi.org/10.1101/cshperspect.a000836
  12. Kasai, Y., Nambu, J. R., Lieberman, P. M. and Crews, S. T. (1992) Dorsal-ventral patterning in Drosophila: DNA binding of snail protein to the single-minded gene. Proc. Natl. Acad. Sci. U.S.A. 89, 3414-3418. https://doi.org/10.1073/pnas.89.8.3414
  13. Markstein, M., Zinzen, R., Markstein, P., Yee, K. P., Erives, A., Stathopoulos, A. and Levine, M. (2004) A regulatory code for neurogenic gene expression in the Drosophila embryo. Development 131, 2387-2394. https://doi.org/10.1242/dev.01124
  14. Zinzen, R. P., Cande, J., Ronshaugen, M., Papatsenko, D. and Levine, M. (2006) Evolution of the ventral midline in insect embryos. Dev. Cell 11, 895-902. https://doi.org/10.1016/j.devcel.2006.10.012
  15. Gray, S., Szymanski, P. and Levine, M. (1994) Short-range repression permits multiple enhancers to function autonomously within a complex promoter. Genes Dev. 8, 1829-1838. https://doi.org/10.1101/gad.8.15.1829
  16. Gray, S. and Levine, M. (1996) Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila. Genes Dev. 10, 700-710. https://doi.org/10.1101/gad.10.6.700
  17. Hong, J. W. and Wu, L. C. (2010) ZAS3 represses $NF{\kappa}B$-dependent transcription by direct competition for DNA binding. BMB Rep. 43, 807-812. https://doi.org/10.5483/BMBRep.2010.43.12.807
  18. Deng, Y., Li, Y., Fan, X., Yuan, W., Xie, H., Mo, X., Yan, Y., Zhou, J., Wang, Y., Ye, X., Wan, Y. and Wu, X. (2010) Synergistic efficacy of LBH and ${\alpha}B$-crystallin through inhibiting transcriptional activities of p53 and p21. BMB Rep. 43, 432-437. https://doi.org/10.5483/BMBRep.2010.43.6.432
  19. Han, K. and Manley, J. L. (1993) Transcriptional repression by the Drosophila even-skipped protein: definition of a minimal repression domain. Genes Dev. 7, 491-503. https://doi.org/10.1101/gad.7.3.491
  20. Um, M., Li, C. and Manley, J. L. (1995) The transcriptional repressor even-skipped interacts directly with TATA-binding protein. Mol. Cell. Biol. 15, 5007-5016. https://doi.org/10.1128/MCB.15.9.5007
  21. Drouin, J., Sun, Y. L., Chamberland, M., Gauthier, Y., De Lean, A., Nemer, M. and Schmidt, T. J. (1993) Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene. EMBO J. 12, 145-156.
  22. Stathopoulos, A., Van Drenth, M., Erives, A., Markstein, M. and Levine, M. (2002) Whole-genome analysis of dorsal- ventral patterning in the Drosophila embryo. Cell 111, 687-701. https://doi.org/10.1016/S0092-8674(02)01087-5
  23. Jiang, J., Kosman, D., Ip, Y. T. and Levine, M. (1991) The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev. 5, 1881-1891. https://doi.org/10.1101/gad.5.10.1881
  24. Campos-Ortega, J. A. and Hartenstein, V. (1985) The embryonic development of Drosophila melanogaster. Springer-Verlag, Berlin; Heidelberg, Germany.
  25. Morel, V. and Schweisguth, F. (2000) Repression by suppressor of hairless and activation by Notch are required to define a single row of single-minded expressing cells in the Drosophila embryo. Genes Dev. 14, 377-388.

Cited by

  1. Discrete Levels of Twist Activity Are Required to Direct Distinct Cell Functions during Gastrulation and Somatic Myogenesis vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0099553
  2. An information theoretic treatment of sequence-to-expression modeling vol.14, pp.9, 2018, https://doi.org/10.1371/journal.pcbi.1006459