• Title/Summary/Keyword: Representation learning

Search Result 513, Processing Time 0.022 seconds

Improvement of Accuracy of Decision Tree By Reprocessing (재처리를 통한 결정트리의 정확도 개선)

  • Lee, Gye-Sung
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.593-598
    • /
    • 2003
  • Machine learning organizes knowledge for efficient and accurate reuse. This paper is concerned with methods of concept learning from examples, which glean knowledge from a training set of preclassified ‘objects’. Ideally, training facilitates classification of novel, previously unseen objects. However, every learning system relies on processing and representation assumptions that may be detrimental under certain circumstances. We explore the biases of a well-known learning system, ID3, review improvements, and introduce some improvements of our own, each designed to yield accurate and pedagogically sound classification.

Zero-anaphora resolution in Korean based on deep language representation model: BERT

  • Kim, Youngtae;Ra, Dongyul;Lim, Soojong
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.299-312
    • /
    • 2021
  • It is necessary to achieve high performance in the task of zero anaphora resolution (ZAR) for completely understanding the texts in Korean, Japanese, Chinese, and various other languages. Deep-learning-based models are being employed for building ZAR systems, owing to the success of deep learning in the recent years. However, the objective of building a high-quality ZAR system is far from being achieved even using these models. To enhance the current ZAR techniques, we fine-tuned a pretrained bidirectional encoder representations from transformers (BERT). Notably, BERT is a general language representation model that enables systems to utilize deep bidirectional contextual information in a natural language text. It extensively exploits the attention mechanism based upon the sequence-transduction model Transformer. In our model, classification is simultaneously performed for all the words in the input word sequence to decide whether each word can be an antecedent. We seek end-to-end learning by disallowing any use of hand-crafted or dependency-parsing features. Experimental results show that compared with other models, our approach can significantly improve the performance of ZAR.

Multilayer Knowledge Representation of Customer's Opinion in Reviews (리뷰에서의 고객의견의 다층적 지식표현)

  • Vo, Anh-Dung;Nguyen, Quang-Phuoc;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.652-657
    • /
    • 2018
  • With the rapid development of e-commerce, many customers can now express their opinion on various kinds of product at discussion groups, merchant sites, social networks, etc. Discerning a consensus opinion about a product sold online is difficult due to more and more reviews become available on the internet. Opinion Mining, also known as Sentiment analysis, is the task of automatically detecting and understanding the sentimental expressions about a product from customer textual reviews. Recently, researchers have proposed various approaches for evaluation in sentiment mining by applying several techniques for document, sentence and aspect level. Aspect-based sentiment analysis is getting widely interesting of researchers; however, more complex algorithms are needed to address this issue precisely with larger corpora. This paper introduces an approach of knowledge representation for the task of analyzing product aspect rating. We focus on how to form the nature of sentiment representation from textual opinion by utilizing the representation learning methods which include word embedding and compositional vector models. Our experiment is performed on a dataset of reviews from electronic domain and the obtained result show that the proposed system achieved outstanding methods in previous studies.

  • PDF

Video Quality Representation Classification of Encrypted HTTP Adaptive Video Streaming

  • Dubin, Ran;Hadar, Ofer;Dvir, Amit;Pele, Ofir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3804-3819
    • /
    • 2018
  • The increasing popularity of HTTP adaptive video streaming services has dramatically increased bandwidth requirements on operator networks, which attempt to shape their traffic through Deep Packet inspection (DPI). However, Google and certain content providers have started to encrypt their video services. As a result, operators often encounter difficulties in shaping their encrypted video traffic via DPI. This highlights the need for new traffic classification methods for encrypted HTTP adaptive video streaming to enable smart traffic shaping. These new methods will have to effectively estimate the quality representation layer and playout buffer. We present a new machine learning method and show for the first time that video quality representation classification for (YouTube) encrypted HTTP adaptive streaming is possible. The crawler codes and the datasets are provided in [43,44,51]. An extensive empirical evaluation shows that our method is able to independently classify every video segment into one of the quality representation layers with 97% accuracy if the browser is Safari with a Flash Player and 77% accuracy if the browser is Chrome, Explorer, Firefox or Safari with an HTML5 player.

A Study on High Temperature Low Cycle Fatigue Crack Growth Modelling by Neural Networks (신경회로망을 이용한 고온 저사이클 피로균열성장 모델링에 관한 연구)

  • Ju, Won-Sik;Jo, Seok-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.2752-2759
    • /
    • 1996
  • This paper presents crack growth analysis approach on the basis of neural networks, a branch of cognitive science to high temperature low cycle fatigue that shows strong nonlinearity in material behavior. As the number of data patterns on crack growth increase, pattern classification occurs well and two point representation scheme with gradient of crack growth curve simulates crack growth rate better than one point representation scheme. Optimal number of learning data exists and excessive number of learning data increases estimated mean error with remarkable learning time J-da/dt relation predicted by neural networks shows that test condition with unlearned data is simulated well within estimated mean error(5%).

Graph Construction Based on Fast Low-Rank Representation in Graph-Based Semi-Supervised Learning (그래프 기반 준지도 학습에서 빠른 낮은 계수 표현 기반 그래프 구축)

  • Oh, Byonghwa;Yang, Jihoon
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.15-21
    • /
    • 2018
  • Low-Rank Representation (LRR) based methods are widely used in many practical applications, such as face clustering and object detection, because they can guarantee high prediction accuracy when used to constructing graphs in graph - based semi-supervised learning. However, in order to solve the LRR problem, it is necessary to perform singular value decomposition on the square matrix of the number of data points for each iteration of the algorithm; hence the calculation is inefficient. To solve this problem, we propose an improved and faster LRR method based on the recently published Fast LRR (FaLRR) and suggests ways to introduce and optimize additional constraints on the underlying optimization goals in order to address the fact that the FaLRR is fast but actually poor in classification problems. Our experiments confirm that the proposed method finds a better solution than LRR does. We also propose Fast MLRR (FaMLRR), which shows better results when the goal of minimizing is added.

Mathematical Exploration of Counterweight Activities (분동을 활용한 문제의 수학적 탐구)

  • Kim, Sang-Lyong
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.1
    • /
    • pp.123-134
    • /
    • 2010
  • Recently, mathematics education have been emphasized on developing students' mathematical thinking and problem solving abilities. Accordance with this emphasis, dramatical changes are needed in learning mathematics not merely let alone students solve real-made mathematics problems. The project learning to explore a counterweight activity will have an effects on positive mathematical attitude(to pose problem, to have curiosity) and mathematical thinking(power 10-digit representation, 2-digit number, two representation of 3-digit number, connect exponential number and log situation) which could develop understanding problems and critical thinking.

  • PDF

Domain Adaptation Image Classification Based on Multi-sparse Representation

  • Zhang, Xu;Wang, Xiaofeng;Du, Yue;Qin, Xiaoyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2590-2606
    • /
    • 2017
  • Generally, research of classical image classification algorithms assume that training data and testing data are derived from the same domain with the same distribution. Unfortunately, in practical applications, this assumption is rarely met. Aiming at the problem, a domain adaption image classification approach based on multi-sparse representation is proposed in this paper. The existences of intermediate domains are hypothesized between the source and target domains. And each intermediate subspace is modeled through online dictionary learning with target data updating. On the one hand, the reconstruction error of the target data is guaranteed, on the other, the transition from the source domain to the target domain is as smooth as possible. An augmented feature representation produced by invariant sparse codes across the source, intermediate and target domain dictionaries is employed for across domain recognition. Experimental results verify the effectiveness of the proposed algorithm.

An Analysis of Collaborative Visualization Processing of Text Information for Developing e-Learning Contents

  • SUNG, Eunmo
    • Educational Technology International
    • /
    • v.10 no.1
    • /
    • pp.25-40
    • /
    • 2009
  • The purpose of this study was to explore procedures and modalities on collaborative visualization processing of text information for developing e-Learning contents. In order to investigate, two research questions were explored: 1) what are procedures on collaborative visualization processing of text information, 2) what kinds of patterns and modalities can be found in each procedure of collaborative visualization of text information. This research method was employed a qualitative research approaches by means of grounded theory. As a result of this research, collaborative visualization processing of text information were emerged six steps: identifying text, analyzing text, exploring visual clues, creating visuals, discussing visuals, elaborating visuals, and creating visuals. Collaborative visualization processing of text information came out the characteristic of systemic and systematic system like spiral sequencing. Also, another result of this study, modalities in collaborative visualization processing of text information was divided two dimensions: individual processing by internal representation, social processing by external representation. This case study suggested that collaborative visualization strategy has full possibility of providing ideal methods for sharing cognitive system or thinking system as using human visual intelligence.

A Didactic Analysis of Prospective Elementary Teachers' Representation of Trapezoid Area (예비초등교사의 사다리꼴 넓이 표상에 대한 교수학적 분석)

  • Lee Jonge-Uk
    • The Mathematical Education
    • /
    • v.45 no.2 s.113
    • /
    • pp.177-189
    • /
    • 2006
  • This study focuses on the analysis of prospective elementary teachers' representation of trapezoid area and teacher educator's reflecting in the context of a mathematics course. In this study, I use my own teaching and classroom of prospective elementary teachers as the site for investigation. 1 examine the ways in which my own pedagogical content knowledge as a teacher educator influence and influenced by my work with students. Data for the study is provided by audiotape of class proceeding. Episode describes the ways in which the mathematics was presented with respect to the development and use of representation, and centers around trapezoid area. The episode deals with my gaining a deeper understanding of different types of representations-symbolic, visual, and language. In conclusion, I present two major finding of this study. First, Each representation influences mutually. Prospective elementary teachers reasoned visual representation from symbolic and language. And converse is true. Second, Teacher educator should be prepared proper mathematical language through teaching and learning with his students.

  • PDF